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1 Introduction

The main body of my dissertation consists of three chapters (chapter 2 through 

chapter 4) each dealing with a different topic yet all related to the notion of efficiency 

of the financial markets which plays a central role in asset pricing.

Chapter 2 investigates into the relationship between changes in overall market 

friction and changes in asset prices. Under the rather broad interpretation that market 

friction is the welfare loss to agents due to market deficiencies each time they trade, 

this chapter examines the structural effects of market friction on security prices and 

trade volumes in an equilibrium setting where investors are risk-neutral. I present a 

dynamic equilibrium model solved out in a closed form in which an ex-cost risk- 

neutral valuation of assets are obtained: the market price o f a stock is a linear function 

of its fundamentals. All friction effects are contained in the coefficient. I find that if 

the market friction is structurally biased in buyer’s favor in the sense that buyers incur 

marginal friction that increases (or decreases) at a slower pace than sellers do when 

both sides try to readjust their sizes of trade in the face o f a shock in market friction, 

an increase (decrease) in the friction parameter in a given trading period will drive 

both the price and its volatility down (up). On the other hand, if the market friction is 

biased in sellers' favor, then an increase (decrease) in the friction parameter in a given 

period will push the prices up (down) along with its volatility. If the friction structure 

is "balanced", then there is no friction parameter effects on prices (and their 

volatility). Hence in the case o f structural bias in favor of the buyers, a steady 

reduction in the friction parameters may result in a steady increase of equity prices as 

well as price volatility. In any case, trade volume falls in response to an increase in 

market friction.

1
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Chapter 3 generalizes the continuous-time asset market beyond the traditional 

framework of Brownian motion driven stock prices by replacing the Brownian motion 

process as the fundamental risk generating factors with square-integrable continuous 

martingales. It is found that markets that consist of a bond and equities are still 

efficient in the sense that markets are dynamically complete, risk-neutral valuation 

holds under some martingale measure and the markets are free of arbitrage.

Chapter 4 generalizes the Black-Schole's option pricing model by considering 

interest rate risks. I incorporate general Gaussian term structure into the short rate 

process and develops closed-form formulas o f equity option valuation as well as bond 

prices with different maturities which define the term structure of economy-wide 

interest rates. By allowing free form of the coefficient functions in the linear 

stochastic differential equation that defines the short rate process, the popular models 

such as the Vasicek model, the Ho-Lee model as well as the Hull-White model are 

covered as special cases in my treatment.
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2 Structural Effects o f Market Friction on Asset Prices

2.1 Introduction

Because of the empirical price anomalies associated with many representative 

agent models in asset pricing theory which is obtained in a perfect security trading 

environment, many people tried to explain the seemingly poor empirical performances 

o f CCAPM by the various kinds o f market deficiencies such as transactions costs, 

market incompleteness and information asymmetry. Research in this direction has 

turned up a sizable literature both theoretical and empirical. See for example, J. Heaton 

and D. Lucas (1994), E. Luttmer (1994), Jiang Wang (1993), M. Jackson and J. Peck 

(1994), J. Bradford De Long et al (1990) and Jie Hu (1996).

Since the various forms of market deficiencies seem to be responsible for 

observed price anomalies, the common wisdom among financial economists is that as 

markets become more efficient in terms of improved overall market efficiency, one 

should observe a behavior of asset prices more in line with classical fundamental 

valuation in an entirely frictionless market framework such as CCAPM.

However, casual empiricism seems to suggest otherwise. The past two 

decades have witnessed a phenomenal change in the financial markets. Transaction 

fees have decreased greatly due to increased competition among brokerage services 

offered by both the boutique shops and the full service bulge bracket firms. For 

example, John Marshall and E.M. Ellis (1994) report that the cost o f transacting for 

institutional traders on a wholesale scale have dropped to 1/20 of the levels prevailing 

twenty years ago. Also, thanks to advances in microchip technology, costs of 

information search have greatly reduced and instant executions of trade become 

increasingly commonplace. Moreover, markets are made more "complete" as more

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4

products become available ranging from plain vanilla to the most exotic, thanks to the 

ingenuity of financial engineering, (see Merton Miller 1994). And yet, there is no 

empirical evidence that indicates reduced price anomalies. On the other hand, the bulk 

of current research also fail to adequately address the issue o f what impact it will have 

on asset prices as markets more and more "friction-free". Motivated by this 

observation, my paper tries to answer, in a general equilibrium framework, the 

question under what conditions an improvement in the overall market efficiency may 

actually cause an increase in the degree of these price anomalies, and under what 

conditions the relation is exactly the opposite.

My paper differs in methodology from the existing research on market 

deficiencies in a number of aspects. First, instead of looking at specific types of 

deficiencies, I pool together all the existing institutional, physical and psychological 

barriers investors (sellers and buyers alike) will have to overcome each time they 

engage in trade. Indeed the conceptual distinctions among the various kinds of 

deficiencies are often blurred at least empirically. Transactions costs may be 

interpreted as one form of market incompleteness or, as is noted in D. Lucas (1992), 

may exacerbate the incompleteness effects, and information asymmetry can induce 

information search costs, etc.. Thus, although the terms market friction and 

transactions costs are used, my paper does not address any specific kind of financial 

costs involved in transacting activities. Rather it is on market deficiencies in general 

and the terms are therefore given a much broader and richer interpretation. The literal 

transaction fees (which may justify proportional cost functions, or fixed costs) are 

only one of the many factors that serve to deter a smooth trade especially when the 

transaction size is large. The liquidity concerns, the potential cost o f search for trade 

partners or an efficient distribution network, the cost of information to the less
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informed "outsiders" (as opposed to corporate insiders), the concerns of inability to 

perfectly reallocate income streams across time and states of nature due to market 

incompleteness such as borrowing and short sell constraints, may play a far more 

significant role in an investor’s decision. Therefore, I summarize in a function all the 

welfare loss to agents in trade due to the factors that jointly work against smooth 

trading activities and call this function the premium of market friction or simply the 

transactions costs. A decrease in the friction parameters will be interpreted as an 

improvement in the overall market efficiency and vice versa.

Secondly, my paper distinguishes itself from the bulk of the literature on the 

effects o f transactions costs on asset prices in that the type of cost effects examined is 

quite different from current research. As is observed in S. Grossman and G. Laroque 

(1990), most empirical and theoretical papers on effects of transactions costs are 

centered around explaining how the presence of costs distorts agents' IMRS (inter

temporal marginal rate of substitution) causing the deviation of asset prices from what 

is justifiable through CCAPM. I call this type of effects the "effects through pure 

IMRS distortion" Such an approach seems to suffer some drawbacks. As is observed 

in G. Constantinides (1980 and 1994), effects of this type are of second order 

especially when the costs are small, which is certainly the case when they are literally 

interpreted as brokerage fees and commissions, etc.. Moreover, this approach does 

not appear to adequately account for the paradox that my paper sets out to dissect, 

namely, why the exacerbation of price anomalies seems to co-exist with the rapid 

evolution o f financial markets toward being more efficient in general. My paper 

identifies another and perhaps more potent source of cost effects which stems from 

the inherent structural imbalance of market friction. I call this type of effects the 

"structural effects" of market friction.
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Roughly speaking, structural effects are the type of effects on asset prices that 

arises when market friction is structured in such a way that aggregate buyers respond 

differently than aggregate suppliers in the face o f shocks in the friction parameters. 

The intuition behind this is fairly straightforward. Market friction acts like a double- 

edged sword that cuts into the profits o f both the buyers and sellers. But the broad 

interpretation of market friction suggests that buyers and sellers in a given market 

may face trade barriers that are quite different in nature. Therefore, in the face o f a 

change in the marginal friction, the two groups o f investors will respond differently in 

their assessments o f marginal change o f friction premiums, or marginal costs, which 

will in turn force them to readjust their demand (or supply) of the security 

accordingly, temporarily causing mismatch o f the demand and the supply in the 

security. Price will have to adjust to put the market back in equilibrium. For 

instance, when marginal friction reduces, both buyers and sellers have incentives to 

increase their sizes of trade since both sides find themselves operating at the levels 

with marginal revenues strictly greater than marginal costs1. But buyers' marginal 

friction may very well increase at a slower rate than sellers and thus aggregate 

demand for the security expands more than aggregate supply creating a momentary 

shortage of supply. Price must adjust upwardly to quiet down demand on the one 

hand and to attract more supply on the other, until the market is back in equilibrium. 

I refer to this situation as the "structural bias in favor of the buyers".

Although structural bias in sellers’ favor may also happen in theory, the former 

scenario appears to fit in more realistically with the on-going changes in our financial 

markets. An overall improvement in market efficiency seems to attract more 

activities from the buyer side than from the sellers. This phenomenon is not without

1 Here the accounting definition of revenue is the cash flow (including capital gains and dividend 
earnings) in a given period excluding friction premium. Cost is defined to be the friction premium.
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a good explanation. Selling activities primarily come from those who are already in 

the financial markets, as in the case o f liquidity sales. On the other hand, buying 

activities not only come from those who are already in the markets but also from 

those who are originally outside the markets. Indeed, advances in information 

technology nowadays provide an easy access to the necessary information for an 

average person at a much cheaper rate. A much reduced brokerage fee makes it 

cheaper for individuals to invest in stocks (and bonds). The availability of more 

advanced hedging tools such as derivatives products makes an outsider more willing 

to dip into the financial markets (more often as buyers than as sellers since people 

don't typically come in and short sell). The rapidly emerging mutual funds make it 

much easier for individual investors with limited financial resources to diversify their 

portfolios and spare additional information and monitoring costs by investing in 

various kinds o f growth and income funds and become indirect shareholders. In 

short, the improvement in overall market efficiency seems to attract market entries by 

many investors who would otherwise shy away from financial investments, causing 

more money to be pumped into (rather than taken out of) the markets. With a 

relatively stable total supply of stocks, this will inevitably drive up market prices. 

The data contained in table 1 is perhaps revealing of the money driven stock price 

increase.
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Table 1

Assets of the Financial Institutions (SBillion)

8

Years Financial
Industry

Insurance
Companies

Commercial
Banks

Mutual
Funds

1989 12,152
(100

1,734
(14.2%)

3,233
(26.6%)

555
(4.6%)

1990 12,910
(100%)

1,880
(14.6%)

3,342
(25.9%)

578
(4.5%)

1991 14,784
(100%)

2,092
(14.2%)

3,440
(23.3%)

814
(5.5%)

1992 15,876
(100%)

2,247
(14.1%)

3,640
(22.9%)

1050
(6.6%)

Note: Numbers in brackets indicate relative sizes o f  the categories (compared within each 

row). Data source: Annual Statistical Digest, Board o f  Governors.

To isolate the structural effects, I look into a risk-neutral world (see footnote 

2), where investors trade securities out o f time preference motives. Since in general 

the observed cost effects are the result of the complex interactions of the two sources, 

and the ultimate result depends on which is the dominant one, we believe that 

structural effects of market friction should receive equal treatment, if not more. 

Indeed, investors (arbitrageurs and speculators alike) are known to have long 

exploited the cost structural imbalance to their advantages by switching between 

buyer side and seller side and the structural effects might well become dominant, 

especially if the effects through IMRS distortions alone are inadequate to explain the 

My paper finds that it is the inherent structure of market friction rather than the sheer 

magnitude of costs that contributes to the price anomalies.
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A word on the functional forms of market friction is due. Casual empiricism 

indicates that market friction with this broad interpretation should exhibit convexity 

with respect to transaction size. In other words, market friction typically entails 

diseconomy of scale since the average costs increase with transaction sizes2 . An 

asset becomes increasingly more difficult to clear out o f one's portfolio for liquidity 

reasons when the volume is large. Large size transactions often require time 

consuming SEC procedures that are otherwise not necessary. Debt financed purchase 

of stocks or other types of assets becomes increasingly more difficult when the 

amount of cash required is large since collateral requirement involves high 

opportunity costs. Financial institutions are known to charge higher interest rates for 

large size borrowing in order to offset the risk o f default (this is also true of public 

debt instruments as in the case of high-yield junk bond issues that are often used to 

finance large size LBO's). Finally, market incompleteness is nicely captured by 

convexity. People tend to use a set of constraints (as in short sale constraints or 

borrowing constraints) to describe the scope of allowable portfolio choices. It is my 

belief that, given the vast investment opportunities, it is not entirely unreasonable to 

replace the hard, rigid and insurmountable constraints with convexity of cost 

premium. Punishment at an accelerating rate may tie up an investor's hands just like 

an artificial constraint (we may refer to this as the shadow price of overcoming the 

constraints. After all, a constraint is just like a cost function in the utility in the 

corresponding Lagrangean). One may overdraw one's bank account. But in so 

doing, he (she)'d better prepare for costs (both in money and the credit track record) at 

an increasing rate. In other words, convexity here serve to smooth up what could be a

2 A counter example might be brokerage fees as discount rates are often available for large size 
transaction. But again, the influence o f literal transaction fees may be small compared to other types of 
trade barriers.
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binding solution (with hard constraints imposed) to an interior one. In short it 

appears to be a reasonable assumption that investors demand a premium for market 

friction at an increasing rate as the size of transaction grows since it becomes 

increasingly more difficult to overcome all the physical, mental and financial barriers 

to trade3 . Thus I do not assume specific functional forms for the premium of market 

friction but I do impose convexity.

The rest o f  the paper is organized as follows. Section 2 formally presents the 

equilibrium model together with its dynamic solution concept. Section 3 looks at a 

special case in which there are two agents trading securities with each other and the 

cost function is symmetric (as is typically assumed). It alerts us to the fact that 

market friction actually has no effects on equilibrium prices (and its volatility) other 

than driving trade volumes down when cost structure treats buyers and sellers in a 

balanced fashion in that sellers and buyers equally adjust friction premiums whenever 

there is a shock in the friction parameters. Section 4 studies the structural effects of 

market friction in a general setting with asymmetric cost functions and multiple 

traders. Section 5 further explains why friction effects can be decomposed into two 

parts that are very different in nature, namely structural effects and risk aversion 

effects. Section 6 is the conclusion.

2.2 Model Setup

The equilibrium concept is the usual competitive one. No game-theoretic 

micro structure or price formation mechanism is assumed.

3 Although technically my model is a risk-neutral one, the convexity of friction premium actually allows 
for a portion that is the certainty equivalent o f one's risky investment, i.e. the risk premium which 
seems to decrease as markets become more complete in terms of availability o f hedging tools such as 
derivatives products and channels of diversification such as mutual funds. Hence investors are not 
truly risk neutral.
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Underlying uncertainty: (Q, J , P), any probability space.

Time horizon: T = {0, 1 , 2 , T}, where Tis a finite integer.

Information: There is no information asymmetry and all investors are equipped with 

the same information structure described by a filtration F = on

(Q, J). We assume that J 0 = 0 }  so that a random variable x  is J  im

measurable iffx  = constant P-a.s.. Also = df.

Securities: There are N  securities indexed by n = 1, 2, ..., N. Security n has an 

F-adapted price process 5 ^  = { S ^  },e j .  It also has an F-adapted

dividend process D ^  = { D ^  }[ej-  Security trading in the «th

security market involves transaction costs or friction premium, which 

is represented by a convex function qn: s:^-±  .5+ such that qn(0) =

0. The argument x  in qn(x) will represent the dollar size o f order in 

security n with positive value so that a positive value of x  represents a 

buy order and a negative value of x  represents a sell order.

Strategy A trading strategy is an r.'v-valued adapted process X  = {Xt}leT where

Xt is the net portfolio holding in period t. Let 0  be the linear space of

trading strategies.

Cash Flow the market is open for trading from period 0 through period T -  1. In 

the final period T, all final date dividends are delivered to stock holders 

costlessly making all the stocks void for any further trading. Thus an F- 

adapted cash flow process c = {c,},eT is said to be financed by strategy
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X =  {Xt}ls j  iff the following is satisfied, with^f_j being the endowment 

o f portfolio at the very beginning of period 0:

C , q ^ h x ? ' ' ~ ^ \ ) l 0s t < r-1

Cf = Xf—i’D’p

Agents: There are m investors indexed by / = 1,2, ..., m. Let A denote the set of 

agents. Agent i has a utility function lf(c) = <5̂ ct over the set of all

adapted cash inflow processes c = {ct}t(Ej ,  where 5i is agent i's time

preference parameter.

Subject to the initial portfolio endowment X_^, an agent problem is described 

by the following mathematical program.

Max 1 max E cr\
(c,X)eA(X_,) '

Equilibrium Agents are price takers. An equilibrium is a vector ((c‘, S) s.t.

for each i, (cl, X )  solves Max 1 with the given price system 5 and the 

security market clears:

0

We will only consider the case in which the agent problem is amenable to the 

dynamic programming approach. There are N  securities traded on the market.
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Security 1 through N  has a dividend process D whose state space is represented by a 

nonempty measurable set We assume that D is Markovian with transition

probability function Ptt+ j: Zx(E(Z) -> [0, 1] s.t. for every x e Q  fixed, Ptt+ j(x, •) is a 

probability distribution on (Z, $(Z)), and for every event A e  (E(Z) fixed, Pl t+ jf-, A) 

is measurable. Let Q = ZT be the underlying space of states of nature with X = 

jX t, where Xt = (E(Z), V t e  T. The filtration F is the past history of dividend 

earnings.

A natural setup of the dynamic problem o f a generic agent is as follows. Let 

X  = be the endogenous state space so that each J 6 I is regarded as a net 

portfolio holding. Let Tr: X x Z  - »  0  be a set-valued correspondence given by Vt(X, 

D) = A generic agent faces with recursive problem at the beginning of

each period t given net portfolio holding Xt and dividend earning Dt: he chooses a 

portfolio strategy process X  = to maximize the following quantity

+ ^~Vt+\(X t ,Dt+\)Pt (Dt,dDt+\ ) }, 0 <t < T —1

Vj(XT_ 1? DT) = X t_ [-Dt , subject to X _l given as endowment

Investors have incentive to trade because of different time preference rates. We will 

see that the person with the lowest rate is always a net seller while the person with the 

highest rate is always a net buyer. Note that because of the presence of convex 

transaction costs, it is not optimal for sellers to sell all his stocks nor is it optimal for 

buyers to purchase arbitrarily large number of shares in a single market transaction.
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2.3 Symmetric Costs and Two Agents

In this section we study the case in which there are two investors i , j  both risk- 

neutral but with different discount rates 5j and Sj (this is crucial to ensure trade in 

equilibrium). The cost function qn satisfying the following conditions

A2.3.1 qn: 7- —»• 7 + is strictly convex and differentiable, V n;

A2.3.2 qn(-x) = qn(x), V r s 2 , V n .

Rem The restriction qn(x) = qn(~x) in A2.3.2 simply says that transaction costs are 

symmetric w.r.t. purchase and sales. In fact if qn(x) = fn(x2) (where f n is 

differentiable), then qn satisfies the requirement. Being a function o f xr is 

equivalent to being a function of |x|. The only difference lies in that a 

differentiable function of \x\ may not be differentiable at x  = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Let's consider the static case in which there are two periods t = 0 and 1. 

Markets are open on day 0. There are N  stocks traded. Let Dq be the dividend (a 

constant vector) delivered on day 0 to investors with initial endowments o f portfolio. 

Let D\ (a vector-valued random variable) be the dividend to be delivered on day 1. 

Suppose there are two investors both risk-neutral but with different time preference 

rates. Let investor i be endowed with portfolio Xj on day 0. Let S  be the going

market price. Then investor i solves the following problem:

max {XfDo - S - Y , -  X„ i f *  )] + Sr jz  Y, ■ D, ) (

where sn > 0 serves as a friction parameter representing the marginal change in

friction premium. Let

/ / = J z A^(d£>,).

(Note that jj. is an -^-vector). Now the agent's problem becomes

max {Xr D0 -  -  Y nsn-qn[ ^ nh ^  -  *<">)] + Sr Yf f t}
1/

FOC

y(»); _5<n) -  )] + 5r^ n) = 0, or (assuming sf-n) *  0)
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^ (W) 
Sin) —  1 ], (2-3.1)

where r„ is the inverse of qn'.

Adding the above across i and j  and observing that ~ -  X^j1̂ = 0

equilibrium gives

5 (B)
-1 3 W -

( S j „ V >
S (n)

—  1

By our assumption about qn (A2.3.2), rn{-x) = - r n(x). Thus we have

rni- ■ ('■m w  i- x i rn[
s (») s in) -1

Since rn is strictly increasing, we have

s,pw | _ 8 jp, w 
5 (/l) S(«)

gri) = 5  5  j  f ti)  = f  ^  J .£(”)(£) t)
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We see that as the friction parameter s„ disappears from the expression of and we 

obtain a risk-neutral evaluation o f the price where the discount is the average of 8, and 

Sj . However, the equilibrium demand by / does depend on en. In fact from (3.1) 

above and the expression for s£n\  we get

--------------- r_[-
(8 i + 8  ;)fi n e

1 28  i
—  1

Thus as long as 8 ^  8p *  0, i.e. there is always trade. If <5} < 8j, then Y ^

-  < 0, (notice that the space of exogenous shocks, i.e. dividends is Z which is

assumed to be contained in --^ +. Hence jj. e -r-i^+). Thus investor j  buys and investor 

i sells. This is consistent with our intuition. Investor j  does not discount future 

income as much as i does. Hence j  has more incentive to buy stock at present for 

future consumption. It's clear that we may relax the differentiability assumption on qn 

to allow kinks at x  = 0. The above Y ^  is still optimal since FOC is sufficient In

other words we may allow qn(x) = f n{|x|) as long as strict convexity in x  is retained.

Why is equilibrium price independent of the friction parameter sn ? Suppose 

8; < 8j so that investor i is a net supplier and j  a net demander. Let’s consider agent z's 

optimal supply and f s  optimal demand as a function of > 0. We have

8  rM (n)
—  1

(  8  , / / ^
 1

5 («) ]
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At equilibrium, s , - ^ * )  = d /S ^ * ) as is shown in the following diagram.

c(" )

Suppose a shock occurs to the friction parameter en so that it moves to a new value s  

„ > en. Thus the demand curve shifts inwards to a new location and the equilibrium 

price is temporarily subjected to the pressure to move to the value as

shown below
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s (")

However, since costs are symmetric w.r.t purchase and sales, the above demand and 

supply schedules derived under risk-neutrality imply that the same shock creates a 

symmetric outward shifting effect on the supply curve so that the pressure on the 

equilibrium price to change is exactly netted out at the expense of the trade volume:
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Q(n)

Although there is no visible effects of shocks in marginal friction on 

equilibrium prices, other endogenous variables do depend on £n. The trade volume 

always shrinks as costs rise since the number of shares traded is given by buyer's 

equilibrium demand (which equals seller’s equilibrium supply)

=
in) ■rn [— -1

One might conjecture that as long as one raises the friction parameter sn high 

enough, investors will be obstructed from any trade as the payoff o f any given 

investment (which is fixed w.r.t to increase in £„) will no longer be sufficient to 

compensate for the cost. It is true that given any positive amount o f trade no matter 

how insignificant it is, one may always raise the parameter high enough to make it
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inferior to zero trade. But this is not the way investors' optimization problem works. 

We should take all exogenous parameter as given and then optimize. The question 

should then be: given any level en, no matter how high it is, is there a positive 

amount o f trade that is better than no trade? The answer is yes at least in our model. 

The net trade is always nonzero (as long as<5j- *  Sj) at any level of sn. The reason is 

simple, at any level of s„, the first order convexity effect approaches to zero when 

transaction size is arbitrarily small (since qn'(0) = 0 ). Hence a small amount of 

transaction can still be optimal. Notice that the presence of friction at a given degree 

may actually block some individuals from trading. But notice that we should 

interpret an agent in our model as a group o f people (with similar tastes). As 

individuals drop out of the market one by one, aggregate demand gradually 

approaches to zero (but does not have to be exactly zero).

2.4 General Case: Asymmetric structure with Multiple Agents

We now study the more general dynamic model in which there are m risk- 

neutral investors differentiated by their discount parameter Sh i = 1,2, ..., m. The 

function of friction premium qn is no longer assumed to be symmetric. In fact there is 

no reason to believe that costs are symmetric w.r.t purchase and sales. We may even 

assume that markets discriminates against individuals in that different investors may 

incur different market friction in a given market even if the transaction volume is the 

same. An anecdotal story could be that a person (or institution) with a good credit 

history, having a good relation with the investment banks, or belonging to certain 

privileged groups may incur far less search costs than a person with different 

backgrounds. Thus let q‘n be the friction premium to investor / in the market for

stock n. Investor fs recursive problem now becomes
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Vit(X ,D )=  m sK {X -D -S ti Y i - X ) - 'L n£(in) qin [S(in)iY (in) - ^ ) ]  +

+ 5i \ z vt+\ (Yh D)P(D, dD) ,  0 < t < T - l

V‘I{X D )= X -D

where e\n  ̂ serves as the marginal friction parameter in the nth security market in the 

r-th trading period.

Here we assume that

A2.4.1 q‘n : Ji -> J£+ is differentiable and strictly convex, with q‘n (0) = 0, V /, V n.

Notice that under A2.4.1, the marginal cost q‘n ' is strictly increasing and also we have 

qn = 0 since q‘n attains minimum at 0. Thus qln ' has a inverse function called r‘n , 

which is also strictly increasing with r ‘n (0) = 0. This observation plays an important 

role in our subsequent analysis.

A2.4.2 There is a constant, NxiV matrix G such that the family of transition 

probability measures {Pt /+1(v ), 0 < t < T - I  }satisfies,

f  D- Pt t+i(D,dD) = G D  ,1 < t < T , V  D e  Z?
JZ ’

The above assumption simply says that the dividend process D = {D,}0<,<t- satisfies 

the growth condition E\Dt+^D^ = GDt so that by recursive substitution, we get
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m +m\Dt] = Gm-Dr 

For example, if A = diag{gt, g2, gN}, then we get 

E l D ^ J D ^ g ^ - D ^

which says the net growth rate o f the dividends of the «th security is gn -  1. It is non-

essential to the qualitative results but it does simplify computation later on. In the 

following, we denote by g ^ m the («, /n)-entry of G 1

Prop 2.4.1 Assume A2.4.1 and A2.4.2. Suppose {Sq, S[, } is a nonzero

equilibrium price process. Then in each period T -  t with 1 < t < T  , S f_t 

satisfies

(n)
v ' T- ‘ V

(Y‘ s k)YNi ' 2 - tm= \°nm  T -t j
o(*)

T -t
,0  < t < T -  1, V «

where r ‘n is the inverse function of the marginal cost q‘n '

proof Contained in the proof o f Theorem 2.4.4 in Appendix A.

QED

To drive home the point that we need to have structural imbalance in market 

friction in order to have structural effects, let's look at the following corollary.
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Cor 2.4.2 Let n be fixed. If there is a number k  so that each q‘n is homogeneous of 

degree k, V i, then the cost parameter en has no effects on the equilibrium 

price in each and every period.

pro o f Since q‘n is homogeneous o f degree k, q‘n ' is homogeneous of degree k  - I  

> 1, i.e. q‘n '(A-x) = Ak~l-q‘n '(x), V x, V A > 0. But then r'n satisfies 

r ^ A ^ y )  = A-rj, (y), or
1

r'n (*y) = A *-l - / ( y ) ,  V y , V X >  0.

It’s clear now from the equilibrium condition in Prop 2.4.1 that the factor 

sn~l can be canceled.

QED

For example if

q‘n (x) = ai\x\k,k > 2 ,V  i,

then no relation of shocks on e  will bear on the equilibrium prices.

The above results sharply points to the fact that when certain kinds of 

structural balance prevails in the market friction, then increasing or decreasing overall 

friction parameters will not affect the equilibrium prices. The intuitive reason is 

similar to the two-agent with symmetric case: under certain kind of uniformity or 

homogeneity, the pressure on the prices created due to shift of the aggregate demand 

curve of one group of agents is exactly offset by the symmetric shifts o f the
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aggregated supply curve of the rest o f  the agents. In this case we say that the market 

friction obtains "structural balance". Therefore, in order to have visible effects of the 

friction parameters, the friction structure needs to be "skewed". In order to 

understand the working principles o f structural imbalance, we first give the following.

Prop 2.4.3 Assume A2.4.1 and A2.4.2. Then investor /'s optimal policy in the (T-r)-th

trading period, as a function of the initial portfolio and dividend pair (X , D) 

as well as the vector ST_t o f market prices and the vector sT_t of friction

parameters, is given by

( Y l S k) - Y N e ( 0 -D(m)
t f l t q ‘n '(s fi} t [ ( X , D ) - X (n)]) = - k=[ 1 ~ " ”=1 nm— —  -  1,

c(«) 
^ T - t

0 < ( < T -  1, V n (2.4.2)

or equivalently,

c(«) n 
T - t

in)
T - t

( Y ‘ s k) Y N s (l)D(m)1 i } L m = \ g nm T - t

\ \

vin)
T - t

-1

0 < r < r - l ,  V n (2.4.3)

proof Contained in the proof of Theorem 2.4.4 in Appendix A.

QED
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Notice that Y y^ fiX , D) -  is agent fs  order (number of shares) in the nth 

security market in period T - t .  When Y jP f(X , D) > 0, agent / is a net buyer, if  

D) -  ]6-n) < 0, agent / is a net seller. Therefore the transaction size (in 

shares) for agent i in the nth security market in period T - t .  is defined to be

| Y<f]f(X, D) - ) 6 n)\.

Equation (2.4.2) is simply the classical optimality condition, namely, marginal 

revenue (the RHS) must be equal to marginal cost (the LHS) (see also footnote 1). To 

gain some insight into structural imbalance, let's look at the case of two agents i and j .  

In equilibrium, suppose / is a buyer and j  the seller and since demand is equal to 

supply we must have

Y ^ ( X ,  D) - )6-n) = - |Y {j ]_]j {X, D) - A ^ ],

or equivalently,

| Y D) -  J^n)\ = | Y (r̂ / ( 7  D) -  )6n)\

When the market experiences a shock in marginal friction, say, the marginal friction 

parameter S j!^  reduces to a lower level, then both agents have incentives to increase

their transaction sizes since marginal revenue is higher than marginal cost for the 

buyer i and marginal revenue is lower than marginal cost for seller j  (notice that for 

seller j , both the marginal revenue and the marginal cost are negative). This is also 

seen mathematically since the marginal friction function q^ipc) is increasing in x.
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Therefore, the magnitude of increase in transaction size in buyer f s readjustment of 

optimal policy depends on how fast marginal friction qn'(x) (>0) increases w.r.t to an 

increase in x  (>0). Seller f s  analysis mirrors the buyer's. The magnitude of increase 

in transaction size by seller j  depends on how fast marginal friction qn'(x) (< 0) 

decreases w.r.t to a decrease in x  (< 0). If qn'(x) increases slower on the buyer side 

(i.e. w.r.t an increase in x  > 0) than it decreases on the seller side (i.e. w.r.t a decrease 

in x  < 0), then, to obtain optimality, buyer i will have to increase his/her demand more 

than seller j  increases his/her supply. In this case, the nth security is under-supplied 

in the (r~/)th period and the market price Sj?lt will have to adjust upwardly to get

back in equilibrium. This is the case which I refer to as "structural bias in buyers' 

favor", i.e. the overall market friction works systematically in favor of buying 

activities in that the marginal cost bom by the buyer increases at a slower rate than by 

the seller when both sides try to expand their trade. In my model, this is precisely the 

reason why market will attract more buying activities causing a demand-driven price 

hike when the friction parameter reduces.

Based upon this intuitive understanding of structural imbalance, it is not 

surprising to see that the following hypothetical function for friction premium 

exhibits structural bias toward the buyer in the case of a two-agent model.

(2.4.4) ?#ito =
x  if x > 0;

- x 3, i fx < 0

The marginal friction is given by
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which is illustrated by the following graph:

the seller side the buyer side

(0, 0)

Clearly, the market friction takes a heavier toll on the seller side when both sides try 

(unilaterally) to expand transaction sizes since the signed marginal friction qn'(x) 

decreases (i.e. increases in absolute value) much faster as x  (<0) becomes more 

negative (i.e. increases in absolute value). We shall later on prove that in the above 

example, the price of the nth security increases (along with it's volatility) as the nth 

market improves in overall efficiency.

We now try to give a general characterization of structural imbalance of 

market friction. For this purpose, we need to solve out the above equilibrium.
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Fortunately, the dynamic equilibrium model admits a closed form solution as given in 

the following theorem. To keep track o f notation, we use i , j  to denote agents, n to 

denote the nth security, and t to denote time periods. r‘n is the inverse of marginal 

friction q ‘n ' to agent / in the nth stock market and s \n  ̂ is the marginal friction

parameter in the nth market and the rth period. 8  is agent fs  time-preference 

parameter, and finally, g ^ m is the (n, /n)-entry of G where G is the growth matrix

mentioned in A2.4.2.

Theorem 2.4.4 Under A2.4.1 and A2.4.2, the model admits a unique nonzero 

equilibrium prices process S  = {St}o<t<T-\- $ IS independent o f the initial

condition, i.e. the initial portfolio distribution Xq among agents as well as the 

initial value of dividend Dq. Moreover, in each period t with 1 < t < T, S-p-t, 

which depends only on the current value Dj_t observed, is strictly positive

and has the form

Isrsr. lSHSAT,  (2.4.5)
WT-1

where is the unique non-zero number satisfying the equation

/=i y e T-t v '
= o (2.4.6)

Moreover, the optimal portfolio policy by i in each period is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

w:,(«)
J=L r ‘

Y n gO) D(m) 
Z -im=z\°nm T - t

F (/l)\ £  T - t
s r ^ I U ' H

(2.4.7)

and the value function o f / is given by

V ^ f X ,  D) = ( £ ' =Q S  f  XG 'DY'X + /T_r  \ < t < T  (2.4.8)

where f T (  is recursively determined through the following:

/ r w  " S - 7 -  l)'  - 1)̂

• ^ - ( 4 - ’, -  0 )  + fy /r - t+ v  1

/ r = 0 (2.4.9)

proof Backward induction and application of Lemma A.1 (in the Appendix A) in 

each iteration step. See Appendix A.

QED

As is seen, the price risks of a security are entirely driven by risks of the 

underlying project reflected in corresponding dividend process. The market 

mechanism contributes to the price risks only by multiplying the stochastic dividend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

(in a given period) by a constant factor l / w ^ .  It is nice to see that all friction effect 

on equilibrium prices are contained in the coefficient Call the function

the distortion function in market n and period T - t .  An increase (or decrease) in 

brings about a decrease (or increase) in the equilibrium price as well as its

volatility. Hence, the study of friction effects hangs critically on the behavior of the 

distortion functions.

To simplify notation, let's consider a change of variables given by

for each security n and each trading period t. may be regarded as a parameter 

representing market efficiency. Hence a reduction in is interpreted as an 

improvement in market efficiency. Then (4.6) becomes

^  ^ T - t  "  =0  (2 A 1 °)

where / = £&= { • Equation (4.10) determines w ^ { as a function of 0 p l t

with Q̂ -p-t ranging nil °ver --++• Note well that ) > ^ in each period T

- 1, and (4.10) implies that there is some value a > 0 s.t. for all Sj with S, < a, 0{a‘T_[- 

w *plt~ 1) < 0 and for all those Cs with Sj > a, 0(<PT_t -w * p \-  1) > 0. In other 

words, for those i with Sj < a, investor / is a net seller in the nth market and for all 

those i with Sj > a, investor / is the net buyer in the nth market. Therefore if  ̂  < £> < 

... < Sm, then investor 1 is always a net seller and investor m is always a net buyer in 

every market and in every period.
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As seen from the previous discussion, when the market friction leans in favor 

of one side of a transaction, this side has more freedom in adjusting its aggregate 

demand (or supply) than the other side since the marginal friction changes at a slower 

rate. This is the essence o f structural imbalance. This can also be captured in terms 

of the inverse function of marginal friction. A slower changing marginal friction y  = 

qn'(x) at x  > 0 (or x  < 0) is equivalent to a faster changing inverse rn(y) at y  > 0 (or y  < 

0). In fact, equation (2.4.3) in Prop 2.4.3 directly ties the individual order size to the 

inverse o f marginal friction and it clearly demonstrates that individual who faces a 

slower changing marginal friction will respond more violently in adjustment of his 

(her) transaction size, be he (she) a seller or a buyer. The following is my formal 

definition of structural imbalance.

DEF Let r ‘n be the inverse of marginal cost functions q ‘n / = 1, 2, ..., m. 

Suppose they satisfy the following condition: for every 0  > 0, and for every 

vector of real numbers (a i, 0 2 , ..., am) * 0  with

I ,V ( £ a , )  = 0 (2.4.11)

there exists a number p >  0 such that for every 9  in the interval ( 9 , 9 + p),

9-at)>  0 (2.4.12)

Then we say that the nth security market exhibits structural bias in favor of the 

buyers. If the relation " >" in (2.4.12) is replaced with " < ", then we say the nth
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security market exhibits structural bias in favor of the sellers. If it is replaced with 

an equal sign" = ", then we say the nth market obtains structural balance.

To understand the definition, let's first look at (2.4.11). We may regard Q as 

the reciprocal of the friction parameter, i.e. 0is the efficiency parameter, and let

c(«)
T - t

Then, from (2.4.3), r ln (#a,) is simply agent fs demand or supply (modulo a common 

coefficient). Thus (2.4.11) is simply the equilibrium condition: aggregate supply is 

equal to aggregate demand, with the positive terms representing individual demands 

and the negative terms representing individual supplies. Suppose the equilibrium 

price S  y*  ̂ is rigid at first (that's why a( is a constant). When 6 is increased to a

higher level 0 every agent wants to unilaterally increase his (her) trade size so the 

positive terms in (2.4.11) will become more positive and the negative terms in 

(2.4.11) more negative. But (2.4.12) says that the net result is that aggregate demand 

exceeds aggregate supply (before price adjustment). In other words, at an aggregate 

level, buyers increase their demand more than sellers increase their supply because 

the marginal friction function changes at a slower pace on the buyer side than on the 

sell side. This is in term reflected in faster changes in the inverse function of the 

marginal friction on the buyer side than on the seller side as in (2.4.12). In this case, 

pressure is on the price to increase to a higher level to put the market back in 

equilibrium, which is shown to be indeed the case in the following theorem.
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Lemma 2.4.6 Assume A2.4.1 and A2.4.2, For every n, i f  the nth security market

exhibits structural bias in favor of the buyers (respectively, sellers), then in

each trading period, the distortion function is a strictly increasing

(respectively, decreasing) function of the efficiency parameter If the

nth security market obtains structural balance, then is constant w.r.t. 
£n)
° T - r

proof see Appendix A.

QED

Theorem 2.4.7 Assume A2.4.1 and A2.4.2. For every n, if  the nth security market 

exhibits structural bias in favor of the buyers (respectively, sellers), then in 

each trading period, a reduction in the friction parameter s ^ t (equivalently, 

an increase in will drive the equilibrium price S ^ t up (respectively,

down) along with its volatility (measured by price variance). If the nth 

security market obtains structural balance, then the equilibrium price

(and its volatility) is constant w.r.t. changes in the friction parameter.

proof Direct consequence of equation (2.4.5) and the above lemma.

QED

In my model, the volatility of asset price increases (or decreases) because the 

price goes up (or down) by the same constant scaling factor X in every contingent 

state of nature. As a result, the mean price goes up (or down) by a factor of X and the
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variance goes up (or down) by a factor of X . Thus, in the case o f structural bias in 

favor of the buyers, the rise o f price volatility is completely due to an increase in the 

magnifying factor o f volatility o f the underlying risky projects. This type of volatility 

increase is intimately tied with structural imbalance o f market friction (which 

contributes to the increase in the distortion factor as well as the project risks

and therefore can not be abated by reducing noise making trading activities. Thus my 

model suggest that, unless the structure of market friction is changed, we'd better 

prepare for even higher volatility in security prices as the markets continue to 

improve in overall efficiency.

Apart from its economic significance, we now demonstrate the power of the 

above theorem in determining to which side the friction structure is tilted and hence 

how price and volatility will react to changes in the friction parameters. Recall the 

example in (4.4) in which the marginal friction function is given by

f2x,  ifjc>0;
%(x) = \ „

-3 x ~, if x  < 0

Hence the inverse function is given by

y l  2, i f y >  0; 

- y j - y !  3, i i y  < 0

Now let a, b be two nonzero numbers and 0>O s.t.

rn(9-a) + rn(0-b) = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

Then we must have that either a or b is negative and the other is positive. WOLG 

suppose that a < 0 and b > 0. Then

d-b/2 -  4 - 0 a ! 3 = 0 => &b2l4 = -da/2 =* 6&2/4 = -a/3.

If 0 is increased to a higher level 0 ' > 0, then

d'b/4 > -a ftb  => 6 ,2b2l4 > -O 'a ft => O'-b/2 > V -0 'a ! 3 =>

=> O'-b!2 -  y l-0  ' a / 3 >0=> rn(0 ' a) + rn(0 ’-b) > 0

Therefore, equilibrium price reacts positively to an increase in 0n .

Finally, it is almost a tautology that market friction always works against 

trade. This is also revealed by the fact that an increase in the friction parameter will 

always cause a decrease in the equilibrium trade volume.

Theorem 2.4.8 Assume A2.4.1 and A2.4.2. Then in any case, the equilibrium trade 

volume is always strictly decreasing in the friction parameters in each 

and every trading period and every security market.

proof See Appendix A.

QED
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It follows that structural bias in favor o f buyers in market friction will result in the 

increase of security prices, volatility and trade volumes in each trading period when 

markets improve in efficiency in that period. Since the (expected) return o f security n 

in period T - t  is given by

K T-t M
T - t

the structural bias in buyers' favor together with a rapid improvement in overall 

efficiency in the nth security market from period T-t + 1 on will inevitably result in 

an increase in the Rj?lt and may actually help explain and predict a growing trend in

equity returns and thus may even suggest that a steady improvement in market 

efficiency from period to period will actually exacerbate the excessive equity 

premium anomaly over time instead of alleviating it.

2.5 Structural Imbalance vs. Risk-aversion

By now we are ready to see why cost effects in general can be conceptually 

decomposed into two parts, namely effects through structural imbalance and effects 

through agent risk aversion. If agents are risk-neutral, then any cost effects on 

equilibrium prices must be realized through inherent cost imbalance. In other words, 

if the friction structure is such that for every 6 > 0, and for every vector of real 

numbers , ym) Qn is the number of agents)

0 = I , /  (£>7 ) => 0 = I , /  (y,-) (2.5.1)
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then no effect is left when agents are risk neutral. Here r‘n is the inverse function of 

marginal friction q‘n ' facing agent i in the nth stock market. Special cases of structural 

homogeneity are when the friction premium function is symmetric or when the 

function is homogeneous of degree k. If cost obtains structural homogeneity, then it 

can only impact asset prices through agent risk aversion in that it may further distort 

the risk-premium in the stock prices as is indicted by the following two-period two - 

person static model. Let the period 1 security payoff matrix D\ be multivariate 

normally distributed: D t ~ N(//, I). Let investor i has CARA Von-Neumann 

Morgenstern utility function u‘(wq, viq) over period-0 wealth w0 and period-1 wealth 

W[ given by

«'Oo> w\) = -exp[-/?,<w0 + vvj)],

where R( > 0 is agent ts  Arrow-Pratt measure o f risk aversion. Notice that

W0 = X rD0 -  S W  - X & -  I r f in W n iY i  n ~ X t „)],

while wj = YrDi is normally distributed: uq ~ N(Kf-T//, Y?1LY). Thus, £[w'(w0, wj)] 

is actually of mean-variance type given by

£[«'(*’o, m>,)] = -expRVo + W r M  -

In other words, agent i's problem is equivalently given by

max {XrD0 -  S(Y ,  - X , ) -  a -  X , j \  + Yrfi  -  l « r y>TS17)}
1/ ^
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To simplify computation, we assume that I  = diag{crj2, <r̂ 2}, i.e. the security 

payoffs are uncorrelated.

FOC:

Yi n- ~Sn ~ Zn'Sn'Qn i£n^n'(Yi n ~~ n)] + Mn~ ~  ^  ^

,5 (w)
O' ~e,<ria-xlr)-s„

Adding across i ,J (two persons) and assuming symmetric cost structure, we get

1 ■) 1 9
g(") ^ n ~ ^  + g{ri) ^ n ~ ~ ° r

From (*) we observe the following

(i) The equilibrium price is decomposed into two parts: the first part is just the 

expected payoff of stock n (the risk-free return is zero both agents treat period 0 

and period 1 consumption equally). The second part ^  an2(RjYfn  ̂+ R jY ^ )  is the
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equilibrium risk premium. Indeed, if  the nth security happens to be risk-free, then 

<Jn = 0  and we have

(ii) Since the structural effect of the cost is nonexistent, the first part, i.e. the 

discounted (according to risk-free rate) expected payoff fin is not affected by cost 

parameter. On the other hand, the risk premium

i<r„2(i,I* ’) + *//">)

contains the effect of the cost parameter sn which is implicit in the equilibrium 

demand Yfn  ̂and (note that equilibrium demand Yfn  ̂ is a function of sn and 

.S ^  through the FOC). Thus we see that when no structural effect exists, the impact 

of cost is realized only through agents' risk aversion in that it may distort the 

equilibrium risk premium

+ « / / ”)).

Most o f the existing literature that examines proportional types (including 

convexified version) of cost effects on asset prices (or returns) have assumed 

symmetric cost functions and have thus excluded the structural effects of costs which 

may actually be o f first order degree importance when risk aversion is negligible.
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2.6 Conclusion

Price and trade volume are the two most readily observable quantities in the 

financial market and an analysis of how the two variables react to shocks in 

exogenous variables is o f foremost importance for a better understanding of the 

working relations among variables in a financial economy in general. In this paper I 

study how stock prices and trade volumes react to changes in the friction parameter 

e \n  ̂ in each security market n and trading period / in an attempt to better understand

how market friction may contribute to price distortions at a somewhat more 

fundamental level. I observe that the effects on prices can be conceptually 

decomposed into two parts, namely, effects through structural imbalance and effects 

through risk-aversion. I remove risk aversion from our model and examine purely the 

first type effects. I find that price of stock n is a linear function of its fundamental 

value and the first type effects are entirely reflected in the distortion function which 

contains no stochastic element and acts as a coefficient in the linear relation. We find 

that in general, if the friction structure is biased in buyers' favor in the sense that 

buyers may have more freedom in adjusting their aggregate demand because o f a 

slower growth rate o f marginal friction than the sellers in the face of a reduction of 

the friction parameter in the nth security market, then equilibrium price <S^ (and its 

volatility) rises in every period, the reason being that the demand side puts more 

upward pressure on the price than can be offset by the downward pressure from the 

supply side. The effects are exactly the opposite if  the structure is biased otherwise. 

In any case, equilibrium trade volume always increase when marginal friction reduces 

because both of the two forces acts unambiguously to push the volumes up. The price 

risks in my model are inherently tied with the underlying industrial projects as well as 

market friction structure and cannot therefore be removed by simply reducing noise
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trading activities. We feel that the structural bias in buyers' favor together with a 

rapid evolution toward better market efficiency may fit more realistically with the on

going changes experienced by the asset markets. On the other hand, the structural 

asymmetry is less severe for the liquid bond market. If this is indeed the case, the gap 

between equity and bond returns will widen as market continues to evolve. Therefore 

it may actually help predict a growing trend of equity premium and equity price 

volatility. In any case, trade volume will continue to grow, which is another 

empirically observed phenomena (i.e. positive correlation between price volatility and 

trade volume).
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3 Efficient Capital Markets under General Square-integrable
Martingales

3.1 The General Setup o f the Financial Markets

Ever since Luis Bachelier proposed Brownian motion processes as asset 

prices, the continuous-time models o f asset pricing and derivatives valuation o f late 

have been set up in the Brownian motion framework in the sense that the basic market 

risks o f asset prices are driven by Brownian motion type of white noise processes. A 

classical example is that equity prices are assumed to be geometric Brownian 

motions. Needless to say, there are some technical advantages to the Brownian 

motion framework. First, we know that the markets are dynamically complete as long 

as it contains stocks and one bond (apart from some additional purely technical 

assumptions). Secondly, there exists an equivalent probability measure (also referred 

to as the risk-neutral probability) Q, s.t. the joint price process becomes a martingale 

under O when discounted by the bond price process. The importance o f the first 

property is quite obvious: any contingent claims can be replicated via stocks and 

bonds in the primitive asset markets that contain only stocks and bonds and therefore, 

in the absence of arbitrage, the prices o f the claims should be equal to the market 

values o f the replicating portfolios. The advantage of the second property is mainly 

computational; it allows for risk-neutral valuations of all contingent claims.

While there are some good economic justifications for the Brownian motion 

framework, it is still not clear that the prevailing structure of market risks are actually 

Brownian motion driven. As LeRoy pointed out in his paper (1989), in a discrete

time model, while random walk type of asset prices do imply that the asset markets

are efficient, the converse is not true. In fact, for asset markets to be efficient (or
43
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arbitrage-free in modem finance parlance), it is necessary and sufficient for the joint 

asset price process to be a martingale under some (probably artificial) probability 

measure and some discount processes (often referred to as pricing kernel or pricing 

density). Since Brownian motion is the continuous-time limit of random walk 

processes, it is not hard to see that the classical Brownian motion framework of 

capital markets may be unnecessarily restrictive and may thus exclude many more 

cases in which markets are still efficient but are nonetheless not driven by Brownian 

motion type of white noise. In this paper, we attempt to replace the underlying 

Brownian motion driven market risks with general square-integrable martingales. We 

find that the two most important properties mentioned in the above paragraph are still 

retained. We then discuss the consequences of these properties in terms o f arbitrage 

pricing of derivative securities.

We begin with a stochastic base (Q, 7, P, T, F) in which the triplet (Q, ■/, P) is

a probability space, T = [0, T\ is the finite time horizon to be considered, and F = 

{ /}/eT t îe filtration satisfying the usual conditions, namely, right-continuity and

completeness. We assume that there are N  stocks and one bond in the financial 

markets. We represent the price process of the «th stock by }/eT, an F-

adapted semimartingale process, with more restrictions to be imposed later on. We 

use B = {Bt}t€j  to represent the bond price. A trading strategy is a pair (<p, 6) of

predictable process, where (p = {(pt}t^ j  is an 2 -valued process representing bond

positions and 9 is an 2 'v-valued process representing joint positions in equity 

holdings. Let S  be the discounted (through bond price) equity price process. In the 

Brownian motion treatment, we know that the space of equity trading strategies 9 s.t. 

the (discounted) process J  9 udSu of capital gains is exactly a martingale under the

equivalent martingale measure Q plays an important role in eliminating arbitrage and
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in the valuation of securities. Now in our generalized version, we want to 

characterize the space o f 9  s.t J" 9 udSu is exactly a g-martingale, for some

probability measure Q. We need some facts about stochastic integration.

Let AT be a continuous local F-martingale. We denote by l  the space of

all predictable F-processes 0s.t.

J0V j 2 d<W>„ <+«o,a.s.

Now for every 9 e  i 2 ((yV)), we know that J  9 udNu is a square-integrable martingale 

iff 6 e  .^((AO), i.e. iff 9 satisfies

E § \ e

This is because a local martingale £  is a square-integrable martingale iff £((£)y) < + 

oo. It turns out that we can also characterize in a similar way the subspace of i 2(iV) 

consisting of all predictable processes 9 s.t. J  9 udNu is exactly a martingale, thanks

to the famous Davis inequality.

Davis Inequality. Let (Q, J ,  P, T, F) be a stochastic base satisfying the 

usual conditions. Let m > 0. Then 3 real constants am > 0 and bm > 0 

(depending only on m) s.t. for every continuous local F-martingale N, we 

have
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where N* = supo<^7 ^ | .

proof See Karatzas and Shreve (Pg 166, 3.28).

QED

Fact 3.1.1 Let N  be a local F-martingale. Let m > 1. Then for every 9 e  / 2(<iV>), 

J 0 udNu is a an Z,m-integrable martingale iff

r  T  q /n/2
< + 0 0  ( 3 . 1 . 1)

proof Suppose (3.1.1) is satisfied. Let L = j  9 udNu . Then by the Davis inequality,

L is L^-integrable and is o f class LD and is thus an L^-integrable martingale. 

Conversely, suppose L is an LOT-integrable martingale. Then again by the 

Davis inequality, E { ( L ) ^ 1) < a m~x-E{{LT)m}= <+«>.

QED

Now back in our financial economy, we impose the following assumptions on 

the stochastic base (Q, J ,  P, F) as a maintained hypothesis throughout this paper.

A3.1.1 The information is continuously revealed in that F is continuous, i.e. every 

RCLL F-martingale (hence every RCLL local F-martingale) has a continuous 

modification (and is therefore actually continuous itself).
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A3.1.2 Let //Iq be the space of ail continuous and square-integrable J--valued F-

martingales N  with N q = 0 a.s.. There exist finitely many members ..., 

of ̂  s.t. {M U), M U) ) = 0 for all i j ,  and if N  is any member of

with (N,  M ^ )  = 0 for all /, then N =  0 a.s.. Moreover, there is a nonnegative 

and nondecreasing continuous F-process A s.t. for every j ,  ( >  is 

absolutely continuous w.r.t A in that there is some nonnegative, adapted and 

measurable process with

<M(y)> = J V  (A L 4 ,V /

Thus under A3.1.2, there exist finitely many members ..., o f " ^

that are pairwise uncorrelated in that M ^ )  = 0 (i.e. A / ^ j ) for all / * j ,

and also are exhaustive in that every N  in ff^  that are uncorrelated with all is

zero. Let M =  ..., t . Then M is called the martingale generator. We have 

the following fact called the representation theorem.

Fact 3.1.2 Assume A3.1.1 and A3.1.2 with M  the martingale generator. Then for 

every local F-martingale N, there is some 6  e  s.t.

+ a.s.V t.

proo f See Philip Protter.

QED
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For our purposes, we will regard M as the source of market risks and will call 

M the market generator. They may be considered as the continuous-time counterpart 

of the market factors in the classical APT of Ross. All market risks are generated by 

M and therefore we assume that the joint stock price process S  is given by

dS = a y  y/-dA + b$-dM

The stocks may pay intermediate dividends that are given by a joint F-process D. We 

assume that

dD = aD- y/-dA + bp-dM

for some MxK matrix-valued adapted and measurable processes a$, ap  s.t. a$- yr and
- ̂

a^-y/ are both in ^(A), and for some NxK  matrix-valued process 6 5 , bD in L N xK{M). 

Notice that the price S j  is the last date lump-sum dividend payoff so we do not in 

general have S j =  0. On the other hand, D is the intermediate cumulative dividend 

payoff (also called the running reward of the stocks). Let G = S  + D be the gain 

process so that

dG = a• y/<IA + b-dM

where a = as  + ao  and b - b s  + bD. Security n = 0 is a non-coupon paying bond with 

price process B given by

dB = /?• yr-dA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49

for some 2-valued adapted and measurable process f l s.t.. fry / e. S.(A). (Again, more 

appropriately B j  should be regarded as the last-moment dividend payoff so B is 

actually a gain process as usual).

A3.1.3 B is strictly positive and bounded away from zero.

We will use an RCLL F-process c = {ct}tej  to denote a cumulative cash flow  

(CCF) process. We require that cQ = 0. Thus c does not include initial investment 

(cash outflow) and thus represents contingent claims to future cash inflows. An 

investor may adopt a trading strategy (<p, 9) to finance c (presumably for 

consumption) with some initial investment w. Thus we say that a CCF process c is 

generated by a trading strategy (<p, 6) with initial investment w if the following 

accounting identities are satisfied:

(i) 6t'(St + ADt) + (pt-Bt = w + J ' Q u-dGu + j ‘Q<p udBu - c t_ , 0 < t< T ,

(ii) d f '(S f  + ADj) + <Py Bj  — ACy (3.1.2)

We denote by (<p, 9) 6  A(w, c, S, B, D) the statement that ((p, 9) finances c under the 

financial market (S, B, D) with initial investment w. For technical reasons, we will 

only consider cumulative cash flow processes c that are square-integrable under the 

given probability P, i.e.
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We denote by 22{P) the space of all CCF processes that are square-integrable under 

P. Under the above setup, and subject to some regularity conditions, we are able to 

establish two important facts, namely, existence of an equivalent martingale measure 

Q for the discounted stock price process (via Girsanov transformation) and market 

completeness.

Lemma3.1.3 Let c e  ~~(P) and let w e  _£. Then 3 (a, 6) e  A(w, c, S, B, D) iff 

there is some qj s.t. (6, qf) e  A(w, c', S, B, D), where c'(t) = 0 for all / < T and

In other words,

9t‘St + t f -B t = w + Jq 9 u -dGu + J ^ M'd S „ , 0 < / < r ,

7* 1d f’S f  + <pT'-BT = Br j0 — d cu 

proof See Appendix B.

QED

Rem The new strategy (0; <pf) can be interpreted as follows. It does noting to the 

original investment in risky stocks. But instead of consuming ct at time t, the
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new investment plan qj saves the consumption and put it in the bank account

(the bond) until T at which the saved consumption grows (due to continuous
T  1

compounding at the interest rate) to the level Br- f — dc„ and is consumed
0  Bu

finally.

As suggested in the above remark, a natural discount factor in this financial 

economy is the rate at which the bond grows. So let

G =S/B+  f — dD 
J B

be the discounted gain process of the stocks. (The discounted gain process of the 

bond is of course 1 ).

Lemma 3.1.4 Let G be the discounted gain process of the stocks. Let c e  ~(P) and 

6 e ^ ( G ;  P) = .^ (G ; P). Then 3 q> e fB ;  P) s.t. (0, cp) e  A(w, c, 5, 5, D) iff 

3 q! s.t.

Qt'StIBt + cp{ = w /B q  + 6 u’dGu, 0 < t< T ,

0t-Sj/B t + (p j  = JQr — dcu

proof Follows directly from Lemma 3.1.3 and numeraire invariance.

QED
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Notice that G is again o f the form

dG = a-t//-dA + b -dM, 

where a = (a$ + a^)/B + S-aB, b = ( 6 5  + bo)/B.

^  IS a IS
A3.1.4 For every -valued predictable process d, the equation b-x =  d  has an s l - 

valued predictable solution x. In particular, the equation b-rj = a-if/ has an 

-valued predictable solution rj in s.t. the stochastic exponential Z of

}re[0 , 7 ] *s a square-integrable F-martingale under P.

Rem The above requirement o f rj is satisfied i f , for example, b-ij = a-iy has a
- 9

solution 77 € L~K(M) s.t.

J0V d W <  +00

since in this case Z = 1 + J  ZdZ must be a square-integrable martingale. A

more delicate condition for Z to be a square-integrable martingale is the 

following:

supjE exp ( ~ j 7 7 j J o r e . - d w . ) < +00

where the supremum is taken over all stopping times. (See Norihiko Kamaki 

Theorem 1.5 on Pg 8 .)
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To show the existence of an equivalent martingale measure of G as well as

the dynamical completeness o f the asset markets, we need the concept of Girsanov

transformation. In our present framework of the financial economy with market 

generator M, let X  be the process {-J* 7  u’dMu }/e [o, 7 ]> which is o f course a local

martingale under P. Consider the stochastic exponential Z  of X. We have the

following fact.

Fact 3.1.5 Suppose 7  = ( 7 1 ,..., 7 ^ )T e  is such that the stochastic exponential

Z of { - J '  7  u&Mu which is given by.

= exP[Jg V u 'd M u -  | l f =l J' 7 V t e r.+

is a martingale under P. Then <~  = ZT defines an equivalent probability

measure Q. Let = A + J  7  ^  Then M  =

is a local F-martingale under O. Moreover, M  has the 

representation property under Q.

proof See Appendix B.

QED

Rem the proof of the representation property of M  gives the Diffusion Invariance 

Principle: if N  is a local martingale under P with diffusion coefficient Q w.r.t 

M, then N  := Y(N) has the same diffusion coefficient 6  w.r.t M.
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Now let 0  be the space consisting of all trading strategies (6 (p) s.t. Jd d G  is

exactly a martingale under Q. We are in a position to show that the market (S, B, D) 

is complete w.r.t (0 , ?2(P)), i.e. for every c e  22{P), there is (9, (p) e  0  replicating c 

under (5, B, D), subject to some initial investment w.

Prop 3.1.6 Assume A3.1.1 through A3.1.4. with rj the required solution to the 

equation b-rj = a- y/. Then there is an equivalent probability measure Q under 

which

M (i) -  A # )  +  j  rj (k)d(Mw)

is a local F-martingale and M = .... M ^ ) J has the representation

property. Also

dG t — b(-dM i

and G is actually a  martingale under Q. Moreover, the asset market is 

dynamically complete w.r.t (0, S~(P)), i.e. for every future CCF process c e 

;~(P), there is some initial investment level w and some trading strategy 

(0, p) 6  0  that replicates c with initial investment w.

proof See Appendix B.

QED
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In order to define arbitrage opportunities, we need to endow ~{P) with some 

ordering. For two processes x, y  in (P), we denote by x y  the following 

conditions

x t >yr P-a.s., V t e  [0, 7]

Also we denote by x >- y  the following condition

x t z y  and there is some t s  [0, 7] s.t. P{x( > y t} > 0

Following Steven Ross, we call a trading strategy (<p, 0) an arbitrage strategy if  it 

generates some CCF c with initial investment w s.t. either (i) w < 0 but c>- 0, or (ii) 

w < 0, but cfcO. We may combine (i) and (ii) and get c + w >■ 0

Cor 3.1.7 The space 0  contains no arbitrage under the market (S', B, D). Moreover, 

for every c e  -2{P), and for every {9, <p) e  0  replicating c (with some initial

investment), we have

et-S/Bt +<pt = £2[Ac/B, + fr 4 -d c „  I ; t], V t e [ 0 , 7] (3.1.3)
u

proof See Apendix B

QED
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Next, suppose we add a new security to the market. Suppose this new security 

is a claim to the contingent payoff represented by some future CCF process 

e 2 \P ) . The valuation of is given in the following.

Cor 3.1.8 Let D ^ +l  ̂ s  (P) be some contingent claim to some square-integrable 

future CCF  process, and let •Ŝ v+l  ̂ be its corresponding ex-dividend price 

process, an RCLL semi-martingale. Let n  be a space of trading strategies for 

the expanded market s.t.

(i) V (0, &N+{\  <p) e n ,  iAx(s, n (0,4-N+l\  p ) 6 n

(ii)n  contains 0  and contains the strategy (0, cp) with 0 = 0 , <p = 0

a n d ^ +1) = l .

If n  continues to be free of arbitrage under the expanded market 

(5, B, D, D(iV+l)), then

s ^N*» = b , e2 [ \* 4 - dfl,(,A' +l) I ;:/l o - 1-4)
u

proof By Prop 3.1.6, there is some (0, <p) s  © financing D ^ +l  ̂with some initial 

investment level w. On the other hand, the trading strategy that only has 

constant 1  as the position on the new security (and zero on all other securities) 

also finances D ^ +l\  Thus both will have the same market values at all time. 

By the numeraire invariance,

S i[N+l)/Bt + A D (tN+l) = 0t-S/B( +(pt = D ^ v+I) -  d [ 5 +I) -  J,r 0 ttdG„ 

Taking expectation under Q conditional on ; t yields
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S([M+l)/B[ + A £ ^ +I) = £ ^ (D (/ +I) -  D j ^ +1) 11,), or

5 (^ + 1) = Bt-EQ(D(TN+l) -  D (* +l^  Jt) = Bt-E Q [£— dD(/ +l) | /,]

QED

3.2 Arbitrage Pricing o f Derivative Securities

For every t e  [0, 7] fixed, let Z be square-integrable and -^-measurable 

random variable and suppose c e  ?2(P) is given by cs = 0 for 5  < t and cs = Z  for s > 

t. In other words, c delivers nothing except the lump-sum Z at / (as in the case o f a 

zero-coupon bond that matures at /). Let {0, (p) e  0  replicate c. Then from (4.1.3) we 

have

9s-Ss/Bs + <ps -  E@\ZlBt | :>s], 0 < s< t  (and 9s-Ss/Bs + q>s = 0 for s > l)

or,

0sSs + Ps =E& [* L -Z s 0  < s < t (3.2.1)

Suppose B is deterministic (a riskless bond). Then we get

S l  = e Q
B.

'  z
\

s'S s +<p s /
0  < s < t (3.2.2)
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The L.H.S o f (3.2.2) is the return on bond over the holding period [j, f]. The R.H.S is 

the conditional expected return on the portfolio ( 0 , <p) over the holding period [j, r] 

under the risk-neutral probability Q.

A particular case to keep in mind is when Bt is given by

this case r is referred to as the short-term interest rate or simply the short rate 

representing the rate at which the bond value is continuously compounding. In this 

case, (3.2.1) becomes

The above provides risk-neutral valuations o f derivative securities, which will be 

discussed below.

We first look at forward prices. A forward contract issued at time t with 

maturity T is a contract that specifies a contingent payment WT to the holder (the long 

party) in exchange for a known fee Ft upon maturity. The contingent payment WT is 

unknown until after information -:T is realized so WT is /^-measurable square-

integrable random variable. On the other hand, Ft is specified at t (although it is paid
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to the short party at time T) so it is immeasurable. By convention, Ft is set to such a 

value that the initial value of the contract is exactly 0  at the time of issuance (i.e. at t). 

In this case, F( is called the forward price of the contract. Now to the long party, the 

forward contract represents a CCF c given by

[0 , i f ^<T;
[IWT - F t , i f j = r

By the definition of Ft and (3.2.3), it follows that we have

0  = eP
(  fT

~ru V u^ueh uY U.(WT - F t ) (3.2.4)

It follows from (2.4) that we have

Ft =  — - —  

'  P (t,T )
•eP

rTI - r u yr udAu 
r l • Wr (3.2.5)

where P(t, T) is the time-r price of the discount bond that pays one unit at time T. For 

example, suppose the forward contract is made on an underlying portfolio 0 of equity 

securities with market value Sj*0T at time T so that WT = Sj*0T . Also suppose 6 

generates a cumulative cash flow stream c{9). Then from (3.1.3) we have

Gt-St = +//■-± -d c u (0) | -7J = BtEP[Ac/Bt + £  j - d c u (9) I > J  =
B. B„
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e Q' re
V

rT-r u V AAU Jt .ff/L. + A ct /B t + [T —1 1 }t R_ dc,j  :Jt

F = P { t,T ) -{-St-et - P { t ,T Y l-E2 A C ' / B ' + j *  -^-dc,| -5f
5c

(3.2.6)

j _  J
Let D ly -  c T_ -  c t_ = Ac/Bt + J  — dcs (d )  be the discounted cumulative cash

'  B s

inflow of the underling portfolio from t (including jump at t) up to T (but not 

including the final jump at T). Then (3.2.6) is rewritten as

(3.2.7) is called the cost-of-carry formula for forward prices. A special case o f (3.2.7) 

is worth noting. Suppose the cumulative cash flow c and the deflator process are 

deterministic given -7r  Then the computation is independent of the equivalent

martingale measure Q and we have

~ r  Iff „dA u
= u-{St-0[ - D I [t, r ) } (3.2.8)

Next, we consider arbitrage pricing of American type options. More 

generally, we consider valuation o f American securities. An American security is
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described by an adapted process Y= {F,}/e[-Q ^  together with a subset F c  [0, T\. Yt

will be interpreted as the contingent payoff to the holder if  he (she) chooses to 

exercise his (her) claim at time t. Also F  represents the time windows available to the 

holder o f the security to exercise his (her) right. For example, a typical American call 

option on a security with strike price K  and maturity T  is given by Yt = (St -  K)+, F  = 

[0, 7]. A European option is also a special case in that F =  {T}. In this context, an 

exercise policy is represented by an F-stopping time r. Q -> F  so that x{eo) is the 

exercise time when co is the outcome. For a fixed exercise policy r, the contingent 

payoff c o f the American security associated with this policy is given by

It follows from the risk-neutral valuation formula, the arbitrage free value of the 

American security associated with ris  given by

Let A(t) be the set o f all F-stopping times r : Q  F  with r  > t. At time t, a rational 

agent will o f course choose an exercise policy r  e  A(f) to maximize V((t) and this 

suggest that the "fair" value of the American security is given by
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We show that (3.2.9) does indeed give a arbitrage-free value of the American 

security. Let Vt be the actual market price at t o f the American security. First, 

suppose

^ <suPreA (o ^ l> ^  ruVfydAu- r p t]-

Then there exists an exercise policy r  e  A(r) s.t.

V( < E 2 [e f''ruV' udAu-Yr \-7(].

Now an investor can purchase the American security for V( and choose exercise 

policy r. On the other hand, using stocks and bond in the primitive asset markets, he 

(or she) can replicate the short position of the American security associated with the

f ~ru ¥  u ^ u  i -given policy rfo r  that has an initial price EX [eJl -Yr I So he (she) gets

positive cash

eQ udA“ .y r \ ~ v t >0

His (her) future obligation is exactly zero by the two mutually offsetting portfolios.

\ - r u yr udA u , _
This is obviously an arbitrage. Similarly, if Vt > EX [eJ‘ -Yt | -:t], the one can

construct an arbitrage. This argument shows that the arbitrage free value of the 

American security should be as given in (3.2.9).
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Although we have just dealt with a few examples of derivative securities, it 

should be clear that the application o f the risk-neutral valuation is by no means 

limited to what we have discussed above.
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4 Equity Option Pricing with Gaussian Term Structures o f 
Interest Rates

4.1 Introduction

The Black-Scholes option pricing formula has been hailed as one of the 

crowning achievements in the theory of finance. Over the years, a number of variants 

of the pricing formula have been developed to better accommodate data observed in 

real financial markets. One of the features of the original formula that people find too 

restrictive is that the short term rate of the bond market is assumed to be fixed. This 

is especially inconvenient for pricing "interest rate sensitive" products such as bond 

options, interest rate swaps, swaptions, and interest rate caps and floors (which can be 

decomposed into a series of bond options), etc.. For this reason, a number of authors 

have recast the Black-Scholes formula in terms o f  bond options with random 

movements of short term rates.

Although interest rate risks have received much consideration in the context of 

pricing of interest rate sensitive products mentioned above, this should by no means 

imply that equity options are not (or less) sensitive to interest rate movements. In 

fact, for long-lived equity options, total ignorance of the interest rate risks may result 

in serious mispricing . 4  This is not only because that the longer the investment 

horizon, the more chances there are for the interest rate to fluctuate, but also because 

the length of the holding period may serve to exaggerate any interest rate errors as is 

suggested in the original Black-Scholes option pricing formula for a call option on a 

stock with current price S, strike K  and expiration T:

4 Some trading experts on the Wall Street suggest that the derivatives disasters of some heavily 
leveraged firms are largely due to sudden movements in short-term interest rates.

64
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F(t) = 5 0 ^ )  -  e - ^ ^ - K Q id J

where cD(-) denotes the c.d.f. of the standard normal distribution and

\n(S/K)  + (r + a 2/ 2 ) ( T - t )  , ]n(S/ K) + ( r - a  2/ 2 ) ( T - t )  ,
d \ = ----------------- 7^= =--------------’ d2 = ----------------- 7 7 = 7 -------------  = d { -  aa d T - t  a d T - t

j T - t

In the expressions for d\ and d1 we see that any errors in r are amplified by a factor of

In this paper, we develop a sophisticated equity option pricing formula by 

incorporating term structures of interest rates. The term structure we consider here 

assumes that the short rate r is a stochastic process generated by the following SDE:

dr(s) = [a(s)r(j) + 6 (s)]dy + c(s)dW(s), subject to r(0) given (4.1.1)

where a, b , c are continuous deterministic functions of the time s and W is the 

standard Brownian motion under some risk-neutral probability measure Q. The term 

structure is called Gaussian because the short rate process is normally distributed. 

We do not specify functional forms of a, b, c so that it is broad enough to include the 

popular models such as the Vasicek term structure or the "arbitrage-free" models such 

as Hull-White and Ho-Lee. Also, by allowing free forms of a, b and c we may 

calibrate these parameters so that the term structure (i.e. the set of prices o f default- 

free discount bonds with varying maturities into the future) best fit the yield curves of
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the bond markets. For an equilibrium justification of the Gaussian term structure 

models, the reader may consult, for example, Darrell Duffie, Costis Skiadas et al 

(1995) in the framework of pure security exchange economy with a representative 

agent with recursive utility.

4.2 The Model

We begin by assuming a stochastic base (Q, 3, P, F) where (Q, J, P) is a 

complete probability pace and F = {<^}r>o is a filtration on the probability space

satisfying the usual conditions. Upon the stochastic base, the primitive asset markets 

consist o f a non dividend-paying stock whose price process S  is given by

dS(t) = M(0S(t)dt + o(t)S(t)dW(t)

and a money market investment opportunity characterized by the value process

dB(t) = B{t)r{t)dt, subject to 5(0) given

where //(/), o(t) are continuous deterministic functions of t, and r{t) is a continuous 

stochastic process to be specified later on, and IF is a one-dimensional F-Brownian 

motion. Under some mild restrictions (e.g. assume that fu, crare bounded), we obtain, 

using the Girsanov transformation argument, an equivalent martingale measure 0  and 

a new standard F-Brownian motion W under O s.t.

dS(s)  =  r(t)S(t)dt +  o(t)S(t)dW (t)
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We assume that under this risk-neutral valuation, the short rate process r  is given by 

(1.1). Notice also that the discounted price process

S \ t )  = S (tye~ ^r{r)dT

is a martingale under Q (hence the name martingale measure for O) and we thus have

S(t) = EQ[S(T)e~^r{ r )dT | J t] (4.2.2)

More generally, The risk-neutral valuation implies that the market is dynamically 

complete and every contingent claim can be priced. Specifically, the arbitrage-free 

value V(t) at time t o f the claim to a random payoff Z, an ^-measurable and Q-

integrable random variable delivered at time T > t is given by 

V(t) = E ^ [e ~ ^ r{T)dT -Z\ oft]

In particular, the arbitrage-free value P(t, T) at time t of a default-free discount bond 

paying one unit at time T is given by

P(J, T) = E P [e~£r( T )dr | J(] (4.2.3)

Similarly, the arbitrage-free value V(t) at time t of a call option on the equity with 

maturity T  and strike price K  is given by
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V(t) = E® (S(T ) -  K)+ .exp^-J?(s)dsj

68

(4.2.4)

The complications with trying to develop an analytical pricing formula for

(4.2.4) lie in that we can no longer take the discount factor directly outside of the 

expectation operator since it is stochastic and not ^-measurable. Thus we need to

know the joint distribution o f both S(T) and the above discount factor. Let

j < * ) =  J V ( r  ) d r ,  V s > 0.

Then

v{t) = e£[(S{T) -  -y™  | J t]

Also, let z(s) = lnS'( )̂. Then we have, by Ito’s lemma,

dz(y)= l/CO -  ^  cr(^)]cLy + a(s)dW{s)

and we get

n o  -  | ,7,] = £2[I,_(7) ^ * ] M  - X T )  _ ^*0 -y C n .fy

JA
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The key to evaluating the above expression is recognizing that the vector (z(T), y(T)) 

is bivariate normal conditional on 3~r  The analysis is based on the following fact 

about linear SDE.

Fact 4.2.1 L e tX  = {X(^)}j e (-Q ^  be an iV-dimensional random process generated by 

the following SDE

cUf(s) = + 5(^)]dr + C(f)dW[j), s.t. X(0) given

where A(s) is an NxN  matrix-valued continuous function of s and B(s) and 

C(s) are Af-dimensional vector-valued continuous functions of s. Then X  is a 

Gaussian process, i.e. AT(.Tj), X(s2), X(sn) are jointly normal for every time 

sequence ^  sn given. Moreover, X  is Markovian w.r.t F and for

every t < T, given, the distribution of Afc) conditional on X(t) (and hence 

conditional on <7, due to the Markov property) is multivariate normal with the

mean vector m and the variance-covariance matrix £ satisfying the following 

initial value problems on the time interval [f, qo):

d/wf?) = [^(s’)m(j) + £(j)]ds, s.t. m(t) =X(t)

dS(j) = [A(s)l{s) + £(^Mt (5 ) + C(s)CT(j)]dy, s.t. 2 (f) = 0

For reference to the above result, the reader may consult with any standard text on 

SDE such as Karatzas & Shreve (1988).
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Now, If we let

r a 0  (T
r \  

b f c '
A = 1  0  0 , B = 0 , c - 0

oo

- i c r 2

and let

X =

r r \

y
\ z  J

Then, X  satisfies the following linear SDE

dX= (AX+ B)ds + CdJV

and thus Fact 1.1 implies that X  is a Markovian Gaussian process. Notice that the 

Markov property allows us to replace the information <7, with X(t) when taking

conditional expectations. Thus V(t) depends on current value X(t) (and the expiration 

time T). Therefore we have

V{t) = V(X, t,T ) = > [nK}< ^(T) + X 0  ~y(T) ~ \X(t) = X ]

Lem 4.2.2 Conditional on X(t) = X, let p  be the correlation coefficient o f y(t) -  y(T) 

and z(T) and let
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z(T) ~ N(a,, b \ ) andy (t)- y{T) ~ N(a2, b\ )

let 6 1 2  = p b yb 2 = Cov{z(T), y{T) I A f̂))- Let P(f, 7) be the price at time t of 

the default-free discount bond paying one unit at time T. Let V(t) be the price 

o f a European call option on the underlying stock with strike K  and exercise 

date T. Then

(4.2.5) P{t, T) = e x p ^ b \ +a2 j

and

(4.2.6) V(t) = S m i d J  -  Pit, T)-K-®(d2)

where

In K - a l - b l l - b f  l n K - a x- b l7 , .d x = -------------- ---------L dl = ----------

proof See Appendix C.

QED
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Notice the similarity between (4.2.6) and the classical Black-Scholes formula. 

In the latter, owe also have the relation d2 = d  ̂ -  a - j T - t , where cr-jT -t is exactly 

b j in our model when <xand r are both constant. Also, if  the short rate r is fixed (i.e. 

a = b = c =  0 ), then the discount bond price is exactly

Pit, T) = e- r(r"')

This is also very similar to the bond option pricing formula developed by Jamshidian 

using the Vasicek term structure. We can see that equity option valuation is indeed 

very much dependent upon interest rate movements because the pricing formula is 

closely tied to bond prices. The difference here is that the underlying equity prices 

provide a new dimension of random movements and thus the option price turns out to 

depend on two explanatory factors, namely, current short-term rate as well as current 

stock price.

Next we deal with computation of the parameters a-, b-[ and b p .  Of course we 

may directly apply Fact 4.2.1 to the 3-dimensional SDE to find out the joint mean 

and the variance-covariance. But the evaluation is very cumbersome. On the other 

hand we find it much easier to work with 2 -dimensional systems.

First, observe that the vector (r, z) arises as the solution to

+ 5 1]dy + C IdIF
( A ( Ai__2

j

II

where
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A, =
'a  O' 

, 1  0

\ ( b ) /
. B \ = - l- a 2 , q  =

I 2 J V

c
a

Hence the mean vector (//j, /Jq) and the variance-covariance matrix Ej are given by

(4.2.7) ~ y l 
d s [ f i  2

\
v  rii

^ 2 ,
+ BX subject to = r(t), and = z(0

dEj/dy + E j/4jT + C jC jT subject to Ej(f) = 0

Solving the above yields formulas for a ( and b {.

Also, notice that the vector (r, y) jointly satisfies the following SDE

( r \  ( r ^
= [A-j

yy) v y j
+ £7]cLy + C-) dW

where

:)■
(b \  f  c

• C 2  =
0 ,

The variance-covariance matrix satisfies the following initial value problem on the 

time interval [r, oo):

+ B2 subject to m j (r) = r(t), and m0(t) = y{t)
d ( m 0  ^

r „  \ m i
-  A0

ds m 9  V 1)
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dZj/ds- = A2 ^ 2  + '*hAl + C2 C 2  subject to I^ if)  = 0

Solving (4.2.8) yields formulas for a2 and b2.

Next, let x  = z  + y  and consider the vector (r, x) which arises as the solution to

frl
f

II UJ

r

where

fa  O' 
2  0 ,

b 2 - b 2 -
' b }

1 9 CT “
\  2

, C3  — C2 —

Hence the variance-covariance matrix Z3  of (r, x) are solutions to the following linear 

system:

(4.2.9) dZ3/dy = 4 3 Z3  + £ 3 /l3T + C3 C3T subject to Z3 (t) = 0

Solving the above yields, among other things, the formula for b^ = Var(x).

Finally, using the relation Var(x) = Var(z) + 2Cov(z, y) + Var(y), we obtain the 

formula for the covariance parameter b l2:

b l2 = [Var(x) -  Var(z) -  Var(y)\/2 = [b] - b \ - b \  ]/2
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and we thus have the following lemma:

Lemma 4.2.3 With the above notation, we have,

a\ =z(t) + r ( t ) \ T(p(s)ds + \ T <p(s) T - ^ - d /  
Jt Jt Jt <p(t)

I rT 7  ds -  —J <r (s)ds

a2  = (s)ds -  f  * <p(s) f ^ Q - d f
Jt Jt Jt m (t)<P( 0

ch

7* 7*
b\ = 2 j p  (s)[f(s)  + gO)]dy + j ( & 2(s)ds

T
b \  = 2  (s)f(s)ds

b \  =4j^ (^ )[2 /(^ ) + g(5’)]ds + j t a \ s ) d s

b n  = [b\ - b ]  - b \ ] l 2 = J,r ^ ) [ 2 /(s )+ g (s)]ck

where

p(.y) = exp{ J  a ( j)d y }

c(Q
(p(J)

dt is
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*W  = f
t cp{s)

proof For details see Appendix C.

QED

Now we summarize the lemmas into the following proposition.

Prop 4.2.4 With the above setup, the price P(t, T, r )  at time t of the default-free 

discount bond paying one unit at time T, given r(t) = r , is given by

P(t, T, r )  = exp[//( t, T, r )]

and H( t,T , r )  is given by
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/ ( »  = £
i2

c (Q

9 (J)
61 iy

The price V(t, T, S , r ) o f a European call option at time t which expires at T 

with strike K, given that the stock price is S  and the short rate is r at t, is 

given by

V(t, T, S ,  r ) = -  P{t, T, F W fh )

ln(S / £ )  + J 7 *0 >(.y)[r+/i(.y)+4 /(.s) + 3g(s)]ds + ( 1  / 2 )J 7'cr 2 (s)dy 
d { = ---------------- ---------------------------------------------------- ------------------

\ ] J 2(P (*)[/(*) + £(*)]& + Jfr o- 2( )̂<±s-|

In( S /K )  + J  r  <p ( s) [ r  +  h(s)  +  2 f ( s )  + g( s ) ]6s  -  ( 1 / 2 ) f J  a  2(s)ds

d l  Tr t   ̂ V̂ 2
2 $? ( * ) [ / ( » + g(.y)]dy + Jf a  0 )d y j

where g(s) = ( '£ £ > £ < £ >
Jt t p ( s )

Direct consequence of the above two lemmas.

QED
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4.3 Special Cases

We now consider some special cases.

CASE 4.3.1 The Classical BlacfcScholes Formula Suppose a = b -  c = 0 so that 

the short term rate is fixed at r .  Also, suppose the volatility parameter a  o f the 

equity price is also constant. Then clearly,

P{t,T) = e

Also, we have/ =  g  = h = 0 and (pis) = 1 so we quickly get

j  _ \n (S  / K) + [ r + ( \ /2 ) a 2] (T - t )

CASE 4.3.2 The Vasicek Term Structure Suppose the short rate process r is mean- 

reverting as in

dr(t) = a(fi- r)dt + cdfV(t)

where a  > 0, > 0 and c are all constants with (3 representing the equilibrium short

rate. Also suppose the volatility cris constant. Letting a = - a  and b = a p  gives

(p{s) = exp[-a(> - 1)]
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h{s)= P[e°^s ^ - 1 ]

a

f ( s )  = - ^ - [ e ^ - 2  + e -« s- l)]
2 a

(  2 cH(t,T,r) = f <p ( s ) [ f ( s ) -h ( s ) - r ] d s  =
Jt ; 2 a  ~

(T-t) +
V

a  3

• + r - P
a

A(t,T) -

4 a
-B(t,D where

A(t, D  = e_ Q ( 7 ’' 0  -  1, B(t, T) = e- 2a^T- t) -  1

P(t, T, r ) = exp{
2 a  ~T - P (T-t) +

f  1 c2 r - B  
— —  + — —

a a
A(t,T) TB(t,T)}

4 a

as is exactly given in Vasicek (1977) and Jamshidian (1989).

Also, we have

l n ( S / £ )  + ^ + « 4 - r  + ^ W r ) .
a s a  a 2 )

3c 
2  a

B(t,T) +
f  7

1 2 3c“ _ 4crco- 2+ + £ + ------
2 a  2 a

(T - t)

(  2 \c 2a c  j  \— H (• O’ (T —f) +
. a  aV04 J

1/2
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ln(S /  AT) +
dn=.

/  <) \  
/3 4c r l a c
  + ---3 ------- + -----a  a 5 a  a ~

1 2 2 c  2 a c \
- - O ' + —y +P+ -----  (T - t)2 a 2 a

f  2 \  c l a c  2
+ --------- +  <T '

Aa  “ a
( T - t )  + 2 c  2o-c  

v a  3 a 2 , l a

Ml

Interestingly, if we let c = 0 and let a  ->• 0, then we get, in the limit, the classical 

Black-Scholes formula again.

CASE 4.3.3 The Ho-Lee Model The short rate process is given by 

dr(s) = 6 (-y)d(.y) + cdW(s), 

where c is a constant. Assume that a  is constant. We then have 

(p{s)= 1

h(s) = J h (  r  ) d r

gfs) = ac(s - 1)
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Therefore we have

Pit, T, r )  = A{t, 7)exp[-r {T -1 )]

where

A(t, T) = exp{ c? iT -1 )3/6 -Bit, T)}

Bit,T} = j J  j b i r  )d r dy

Also, we have

I n S /K  +[F + i l / 2 ) a 2+ 2 a c iT - t )  + c2i T - t ) 2] iT - t )  + B it,T) 

[(1 / 3)c2 (T - 1)2 + <j  c iT - 1) + a  Z]1/2 y fT ^ t

_ InS / K  + [ r - i l / 2 ) a 2+{2/3)c2i T - t ) 2 + c r c jT - t ) ] ( T - t )  + B jt,T )
2 [(1 / 3)c2{ T - t ) 2 + a c i T - t )  + a  2]{/24 f ^ l

Notice that in the original Ho-Lee model, b has a more concrete form

bis) = F J  0, s) + c s

where Fit, s) is the instantaneous forward rate.
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CASE 4.3.4 The Hull-White Model. The short rate process r is given by

df(j) = \JKs) ~ or(^)]dy + cdW (s)

Assume that c, a  are both constant. Then

cp(s) = exp [ - 0 ( 5  -  0]

A(j ) =

g(s) = — [e«s- ‘) -  1] 
a

f  (s) = - ^ r  [e*s~l) -  2 + e - ^ ]  
2 a  2

We have

P (t,T ,r )  = exp{H (t,T ,r)}

with

j  2
H(t,T,r) = Jp ( .y )[ /( .s ) -/?(*)-r]d y  = - ^ - r -(T-t)

2 a  2

f  2  c r
—:r H--- A(t,D

4 a
•B(t,T) -  C(t,D
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where A(t, T), B(t, 7) are as in CASE 4.3.2 and

C (f,7) =  j V a ( , " °  ^

Also,

r

ln(S / K) + 6c r  4crc
3 a  a 2

-

3 r
2a

B( t ,T)  + C( t , T )  +
f 9 'N

1 ? 3c“ 4<7C
~ O' -+ --- 9 +2 ct~ a

( T - t )

 ̂ c2 l a c  9 ~ H-------- t- CT ~
a  - a

( T - t )  +
( i c 2

a

l a  c

a

1/2

2a  “

d 2 ~

ln(S / K) + ^4c2 r l a c ' ^(r,r) - - T B ( / ,n + c ( / , r )  +  ̂ 1 2 2c2 2crcY- - o - - + ( 7- / )
2 a  - av “  y

/  2 \  c 2crc 2
+  <7 '

a a ( 7 - / )  +
2c 2cxc
a a

A ( t , D  , B ( t , T )
l a  2

1/2
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Appendix A
The key to recursively solving out the dynamic equilibrium model is the property that 

at each iteration step, the equilibrium price is shown to be a linear function of the 

current dividend earning.

Lemma A.1 Let f{. 2. -» A  be a strictly monotone and continuous function, s .t .ffx )  

= 0 has a solution, i=  1 ,2 ,..., m. Let A be a nonempty subset of 2++. Let a,-

> 0, bf be real constants, i=  1 ,2 ,..., m. Then the following equation

o = z d — - b ^
v y

, x  eA

Uniquely determines y  as a linear function of x  on A: y  = a x  where a is the

unique nonzero constant s.t. — - b t | = 0
a-,

proof. The usual implicit function theorem is not applicable since A is not necessary 

an interval. But proof is remarkably simple. First it's easy to see that there is a 

unique number a such that

a;

This is because when — is sufficiently large z A  — ~bj
y

is positive, and

1 (a-when — is sufficiently negative, Z f  - - b j
y  V y

is negative due to the property

that f  is strictly monotone and f (x )  = 0 has a solution x,-. The intermediate-
84
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value theorem guarantees the existence of a. Let y  = ax. Then clearly y  solves 

the equation. Since f-t is strictly monotone, y  = ax is the unique solution

QED

Proof o f Theorem 2.4.4: Let { S q , ..., Sf-[} be any nonzero equilibrium price process. 

We show that { S q , ..., Sf_t} and investors policy together with their value 

functions are as given in the theorem. The result is easily seen to be true for 

period T — 1 by deriving the FOC and using Lemma A .l. Now suppose it is 

true for T - t  so that

( 'W -r ,  D) = ( I ^ 0<5 ? x & D f x  + / r _, W , V /

where f T_t(e) contains no stochastic elements. Let S T_t_ [ be the equilibrium 

price in period T - t -  1. Then investor z's problem in period T - t  - I  is

D) = max { t f X - S T_t_v (YiT . . - X )  -yl i l l
'r-f-i

cLD) = (by induction hypothesis)

= max { D 'X - S T_,_r (I*r _,_, -* "> )]
YT - t-I

+ <HM S  .‘ +1 )[c ('+1)D]t + sr/ T^ s )
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FOC: differentiating w.r.t. ôr eac^ w» ŷ e^ s

=  0

*= r‘n
1 I

(«) r-f-i e(«)
■Y-m

(A.1)

Adding across i gives

0 = 1 ; /< « p  (")v *  r - f - t c(«)
-1

-(f+O^On)
By Lemma A.1,  » where w ^ ,_ j is  defined by

w T - t - \

0 = 1 ; /  1 n C n) 
T - t - 1

K-1,-1 *S*=o^ i
A+i

\

-

Now substitute the expression 5^2 ,_j = —A — back to
w T - t -1/ « )

(A.1) and we get
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Now Substituting (A.2) back into the expression for D) gives

the desired result. Hence induction is complete and necessity is proved. 

Finally since FOC is sufficient, the entire proof is complete.

QED

Proof of Lemma 2.4.6

We prove case of structural bias in buyers' favor only. We first show that 

w7 is locally strictly decreasing in 0, i.e. for every 0> 0, there is some 

a>  0 s.t. for every O' e  (0, 0+ a), w ^ t(0 ') < w ^ ( 0 ) .

Let 0> 0 be given with

Clearly, oC -w -  I cannot be all zero (and therefore some must be

positive and some must be negative) since s are distinct. By the 

definition of structural bias in buyers’ favor, an infinitesimal increase of 0  to 

the value 0 ' makes
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I ,r ‘n [ 0 ' V r _ , w  ( " 2 , ( «  -  1 ) ]  >  0  ( * * )

Since r ln is strictly increasing, the only way to achieve a new balance is for 

w to decrease to a lower level w ') so that the positive terms

in (**) become less positive (i.e. decreased) and the negative terms become 

more negative in order to get the following

Hence is locally strictly decreasing in 9. Since is a continuous 

function of 9, it follows now that is actually globally strictly decreasing 

in 9 as well.

QED

Proof Theorem 2.4.8

To prove this in our framework, observe that in equilibrium, trade volume in stock 

n is the sum of all net buyers' demand Y ^l'l -  ”2’/ > 0. It is also the absolute

value of the sum o f all net sellers' supply Yj^-I ~ X j?-I < By (2.4.3) we 

have

y (n ) , i  y (n ) , i  _  
1 T - t  ~ A T - t  ~ c (n)

* T - t
F («) 

\ £  T - t
?(«)
yT - t

- I (2.4.3)
J J
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First suppose the market is in equilibrium so Sj?lt is the equilibrium price. Let

Let d  be the equilibrium demand and j  be the equilibrium supply and we have d  = 

s, which represents the equilibrium trade volume. Now le t£ ^ f increase to a 

higher level d  . The both aggregate demand and aggregate supply (in absolute 

value) must decrease by (2.4.3) (before price adjustment). Let d  ’ be the new 

aggregate demand and let s' be the new aggregate supply (in absolute value). One 

of the three cases must occur.

Case 1. d  = s' and thus the equilibrium price stays unchanged with equilibrium 

trade volume d  <d.

Case 2. d  > s'. The equilibrium price but adjust to a higher level so that d  is 

further decreased to a level d  " and s' is increased to a higher level s " until 

d ' = s" holds. In this case, the new equilibrium trade volume is d ' < d  <d.

Case 3. d  < s'. The equilibrium price must adjust down to a lower level 

further depressing s' to a lower value s" but increasing d  to a higher level d " until 

s'' = d '. But again we have s" < s' < s = d  = the original equilibrium trade volume.

QED
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Appendix B
proof o f Lemma 3.1.3:

Let a, = [!— dc„. Then we have 1 JO D “

Now the integration by parts formula yields 

u- d B u =ct.

Hence

<*t-Bt -  j ‘Q a  udBu = c,_, 0 < t< T

Now first suppose (0, (p) e  A(w, c). Let qf = <p + a_. Clearly qf e  i(B ). 

Now we have

6t'St +<pt’-Bt = 0t'St + <pt-Bt + at_-Bt =w+  J ' 0 u-dGu +

J o ^  h ^ b  ~ ct- + ct -+ !o a  u<Mu= w + £  0u'dGu + j tQ<p’dBu, 0 < t < T  

with

1 T 10 f S T + <pT'-BT = A ct + Br jQ — d cu = 5 r | 0 —  dcu
U U

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

Hence (3.1.4) is proved. Conversely, if (0, qf) satisfy (1.4), then let

(p= <ff -  a_

and we have (3.1.3).

QED

proof of Fact 3.1.5:

A/(*) = r(A /^ ), V k. To see that M  has the representation property (under 

Q), let N  be a local F-martingale under Q. Then by Fact 3.1.2, N  arises 

as the Girsanov transform of some local F- martingale N  under P, i.e.

N =  N + ( N , f o u-<iMu)

Thus there is some 8  e  (= /  ̂ ,( M)) s.t.

U, “  Wo + Jo e  „■ dM„ -  N 0 + J ' 0 „• dW„ =

W ( 0 -  * 0  +  J o «  - U t i y P n  < * / « > „  +  < * , / '  „  „ -dA /„>

= tV0 + [ '8  u- iU v - Z t J 'e  < * > 1 7  + <Je n u‘dMu)

= iV0 + J ^ „ - d * „

Hence the representation property of M  is established.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

92

QED

proof of Prop 3.1.6:

Construction of 0  and the representation property of to 'I r e n  in Fact 3.1.2. 

Direct verification shows that

d G = b -d M .

To see that G is actually a martingale under 0 , notice that by assumption, b 

e ? 2n >cK((M ); P). But since the density ZT = dQ/dP is square-integrable 

under P, it follows that b s  Q) = Q) and thus G is a

martingale under Q. Next we prove that the asset market is complete. Let c 

e :2(/>). Let

j  j
w = w/Bq = £^(J0 — dcu ) and N=  {M}/e[0, n  be given by

:J . ° s ' s r

Then N  is a 0-martingale and therefore by the representation property of 

M , there is some vT s  ^ i xk ( ( ^ »  = s-t-

MO = w/BQ + j CQv u-dMu,0 < t< T .
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Let 6  satisfy 9-b = v. Then we have 6  e  H((G); 0 .  Let <p = N  -  0‘S . Then 

clearly (p e  i (5 )  and

0,*(S[ + AD,) + <p, = N, = w + J ' v u-dMu =

= w + J 'f l  -dG ,0 < t< T ,  and

6 j'(S  f+  A D f) +<Pt -  N t=  Jq  ~ d cu ■
“u

It follows from Lemma 3.1.4 that the market (S, B, D) is complete w.r.t

(0 , : \ p )).

QED

proof o f Cor 3.1.7:

Suppose there is some CCF process c in ~{P) that is financed by some

{6, (p) e  0  with some initial investment w s.t. c + w > -0  under the original 

markets (S, B, D). Then by the numeraire invariance theorem, c is financed 

by {6, <p) under {SIB, 1, £>) with initial investment w = w/BQ, where

c = \ — dc .
J B

Thus we have

™ + c T = \ l e udGu
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Since J 0  dG is a martingale under Q, it follows that 

0 = E2[w + c T ]

in direct contradiction to w + c >- 0. Hence, © contains no arbitrage. Next

let c e  (P) be any CCF process so that c := J — dc is financed by some 

(0, (p) in 0 . We must then have

Taking expectation under Q conditional on -:t gives 

Ot'S/Bt + <pt = E9[c T - c t_ I

QED
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Appendix C
proof o f Lemma 4.2.2:

First, let F(- ; m, b2) denotes the c.d.f of the normal distribution N(m, b2). Then 

we have

1 -  F(pc; m ,b2) =
b

Next, the joint density o f z(T) andy(0 ~y(T) is

f e y )  =

I x b f e - J l - p  2
exp 1

2(1 - p 1)
( z - g [ ) 2 2 / ; ( z - a i ) ( ^ - a , )  Q - -a 2 )2

A2 A ,A 2 b\

Now let

V \ =  *  M ,)' X 7 )1 1 "J • 31,(1 V2 = £ f iP W D  2 In * }* * 0

Then

r ' = \ l S - / + y n z ’y ) i ^ = \ l A \ ' ° - * e y n z ' y ) i y
dz

95
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To computer the inner integral in the square bracket, let

y -a -i z —a\u = -  v =  L
bi bx

Then

f  ey f{ z ,y )d y  = 
J -00

i _ r
it h , * —6 1 00 V 2^r(l-/7 2)

exp 1 2 2 byu + f lo  - 2 p u v  + v ]
2(1- p 2)

d u

1
J l j T  b [
oo 1

I i ' lK iX - p  2)
exp u2 - 2 [ /? v + ( l - p  ~)bi\u + v2 —2(1 —yO 2)a2 

2(1 - p 2)
►d u

1 f«
bx Jin Kf exPJl r

1 I

[ v - ( p b i  +6i)]2 ~ (62 + 2pb\b i +b2 ) - 2 (ax + 0 2 )

exp{/i(z/)}dn

•dz =

where

h(u)= - [K-pv-Cl-p2)^]2 -|>V + ( l - p 2)»;f+V2 — 2(1 2)Q2
2(1 - p 2)
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Thus the inner integral gives

1 r00fJ—0a/2^7 *1 J-°° y j l t c i l - p  2) 

1
bx

exp —

exp{/j(w)}dw=

v2 -  2p bjv -  (1 - p  2)b2 -  2a2 ^

1 r°°
V\ = - f — - - 1 exP■Jin: b\ ■'ln^

v2 - 2 p b 2v -2 b \v  +p 2bj -2 a \ - b 2 - 2 a 2

2

= exp
(b2 +2pblb1 +b2) + 2(a{ +a2) i 2 -2>.n

  l [\-F(\nK-, a x +pb{b2 + b x , b { )]

= exp
(6j +2p b\b2  +b2 ) + 2(a\ + #•>) ln £ - tf i  -pb]t>2 ~ b 2

bx

= exp-
(62 +2612 + 6 |)  + 2(ai + a2 )

O
lnK-aj  -hj2 -6j
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Similarly, - f= L — exp 
yj27C b\

f  v2 - 2 p b 2v - (1  - p  2)b2 - 2 a2

1 f00
V2 =  — r= — — K \ exp-

z yJ2x b{ JinK
( v - p b j ) 2 - b y  - l a 2

dz =

= exp-
b2 + 2 a 2 1 r explJin a:

[ z -  (fl! + p b l -b2 )]2
2 y [ 2 x  b x 2bf

dz =

= exp j i * 2 + a 2 -  F(lnAT; a , + p b {-b2,, b2 )] =

= expjy62 +a2 jAT-Or InK - a x- b x2^

Hence

V(t)= exp |~ ( ^ f  +2612+ 62 ) + (a1+ a 2) |o (c /1) - exp 6 2 + a2̂ K-<^{d2)

where

In K - b n - b }J _  in K - b l2 -b ~  j  _  inK - a x- b X2
a 1 — - , a9 -

1 h

Finally, notice that
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is exactly the moment generating function g(A) o f the random variable y{t) —y(T) 

+ z(T) computed at X = 1. In other words

exp|^(6j2 +2bi2 +62) + (a l + a 2) j = E^[er{T) + ^  ~ ^ 1  X(t)] = (Markov 

property)

= E 9[^(T) 1>,] = E[S(T)-e~^r{ r )dr | :t] = S(t)

by (4.1.2). Also,

exp |^ 2  + a2 j

is the moment generating function h(r) o fy(t) -y (T )  evaluated at r =  1 and so by 

(4.1.3)

exp { ^ 2  + a21 = ^ ^  r )dr I ',] = Pit, T)

QED
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proof o f Lemma 4.2.3:

Here we demonstrate only how to derive formulas for a2 and b2. Derivations 

for other parameters are the same. Consider the system of linear differential 

equations (4.2.7). Solving the linear equation for m yields

/  \  f f f l ( r ) d r  r f 5  — f f a ( r  ) d r
m x(s) = elt [KO + J e il -6(/)dr]

Next, m2(s) satisfies

dm2(s) = m j (y)cLy, s.t. m0 (t) =y(t)

m2(s)= y(t)+ jm , ( r  )d r  =

f 5  I /  ) d r  j -  f s  f f  a (  r  ) d r  — f f a ( r  ) d r= + e dy -  J eJ' J e -6(r)dr cLy

Now

— r ( / ) j V a ( r ) d r dl >dr .4(,-)d,- dy

To compute variance and covariance, let
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*2 =
" o - 2r

Ka  r,y

r,y
T 2

y

Then

d S ^ /is  —A j £ 2 +  +  C-jCj"*"

The above reduces to a system of linear differential equations in three 

unknowns.

dcr 2 Ids = 2a a  2 + c2 r r
J

dcr r y k Ly = a a  r y  + <Jr 

d c r2/d? = 2cr r y

We get recursively,

^  , j y 2 w  ,c2(j ) d f ,  ^ c(s)
(p(s)

i2
ds

t*S /•«! c( t )

(p{i)
d/ is- = <p(s)f(s) where

c ( t )

(p(J)
d/ dLy

2  rs ~ cr y (s) = 2J <p ( j) /(^ )d y  Finally, notice that

a2 = b \ = * 2 m

QED
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